期刊文献+

飞秒激光对镍基合金的损伤机制和阈值行为 被引量:14

Femtoseoncd Laser-Induced Ablation Regimes and Thresholds in a Nickel-Based Superalloy
原文传递
导出
摘要 针对飞秒激光加工镍基单晶高温合金材料,在能量密度为0-12.8J/cm2和脉冲个数为0-8000范围内,对表面损伤和加工侧壁区域进行了显微形貌分析,研究了不同能量密度和脉冲个数情况下的损伤机制,不同损伤机制的损伤阈值和热效应。镍基单晶高温合金经飞秒激光加工后,呈现两种损伤机制,分别为非热熔性损伤和热熔性损伤,单脉冲损伤阈值分别为0.23J/cm2和1.21J/cm2,孕育系数分别为0.90和0.92。在此基础上,建立了损伤机制和损伤阈值与能量密度和脉冲个数的定量关系,实验结果对加工无微裂纹和无再铸层的高质量镍基航空器件的工艺选择有实际指导意义。 Femtosecond laser-induced ablation regimes and ablation thresholds of single-crystal nickel-based superalloy are investigated by means of microstructure on machined surface and trench as a function of laser fluence of 0-12.8 J/cm^2 and the number of pulses of 0-8000. Two distinct ablation regimes (no-melting and melting ablation regime) are observed, dependent on the incident laser fluence. The ablation threshold fluences for these two ablation regimes are determined to be 0.23 J/cm^2 and 1.21 J/cm^2 in the superaUoy. And the incubation factors for these two ablation regimes are determined to be 0.90 and 0.92. Furthermore, the relationship between both ablation regimes and ablation thresholds and their parametric dependence is established. The experimental results have practical guiding for processing nickel-based aviation of no recast layer and micro-cracks.
出处 《光学学报》 EI CAS CSCD 北大核心 2014年第12期340-346,共7页 Acta Optica Sinica
关键词 超快光学 飞秒激光 镍基单晶高温合金 损伤机制 损伤阈值 ultrafast optics femtosecond laser single-crystal nickel-based superalloy ablation regime ablation threshold
  • 相关文献

参考文献22

  • 1S K Sundaram, E Mazur. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses [J]. Nature Materials, 2002, 1(4): 217-224.
  • 2D K Das, T M Pollock. Femtosecond laser machining of cooling holes in thermal barrier coated CMSX4 superalloy [J]. Journal of Materials Processing Technology, 2009, 209(15): 5661-5668.
  • 3Q Feng, Y N Picard, H Liu, et al.. Femtosecond laser micromachining of a single-crystal superalloy [J]. Scripta Materialia, 2005, 53(5): 511-516.
  • 4Q Feng, Y N Picard, J P McDonald, et al.. Femtosecond laser machining of single-crystal superalloys through thermal barrier coatings [J]. Materials Science and Engineering A, 2006, 430(1-2): 203-207.
  • 5R R Gattass, E Mazur. Femtosecond laser micromachining in transparent materials [J]. Nat Photon, 2008, 2(4): 219-225.
  • 6N H Rizvi. Femtosecond laser micromachining: Current status and applications [J]. Piken Review, 2003, 50: 107-112.
  • 7W Zhang, G Cheng, Q Feng, et al.. Femtosecond laser machining characteristics in a single-crystal superalloy [J]. Rare Metals, 2011, 30(1): 639-642.
  • 8S Ma, J P McDonald, B Tryon, et al.. Femtosecond laser ablation regimes in a single-crystal superalloy [J]. Metallurgical and Materials Transactions A, 2007, 38A(13): 2349-2357.
  • 9N Semaltianos, W Perrie, P French, et al.. Femtosecond laser ablation characteristics of nickel-based superalloy C263 [J]. Appl Phys A, 2009, 94(4): 999-1009.
  • 10W Zhang, G Cheng, Q Feng, et al.. Abrupt transition from wavelength structure to subwavelength structure in a single-crystal superalloy induced by femtosecond laser [J]. Applied Surface Science, 2011, 257(9): 4321-4324.

二级参考文献133

  • 1郭乃国,罗新民,花银群.激光冲击处理对金属微结构及其性能的影响[J].材料导报,2006,20(6):10-13. 被引量:19
  • 2N. T. Nguyen, A. Saliminia, S. L. Chin et al.. Control of femtosecond laser written waveguides in silica glass[C]. SPIE, 2004, 5578: 665-676.
  • 3G. D. Valle, R. Osellame, P. Laporta. Micromachining of photonic devices by femtosecond laser pulses[J]. J. Opt. A: Pure Appl. Opt., 2009, 11(1): 013001.
  • 4R. Taylor, C. Hnatovsky, E. Simova. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass[J]. Laser and Photon. Rev., 2008, 2(1-2): 26-46.
  • 5P. G. Kazansky, Y. Shimotsuma. Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications [J]. J. Ceram. Soc. Japan, 2008, 116(1358): 1052-1062.
  • 6K. M. Davis, K. Miura, N. Sugimoto et al.. Writing waveguides in glass with a femtosecond laser [J]. Opt. Lett., 1996, 21(21): 1729-1731.
  • 7G. Cerullo, R. Osellame, S. Taccheo et al.. Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing [J]. Opt. Lett., 2002, 27(21): 1938-1940.
  • 8G. D. Marshall, P. Dekker, M. Ams et al.. Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating [J]. Opt. Lett., 2008, 33(9): 956-958.
  • 9G. Cheng, K. Mishchik, C. Mauclair et al.. Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass[J]. Opt. Express, 2009, 17(12): 9515-9525.
  • 10C. Mauclair, G. Cheng, N. Huot et al.. Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials[J]. Opt. Express, 2009, 17(5): 3531-3542.

共引文献20

同被引文献144

引证文献14

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部