期刊文献+

变参数欠驱动平面五杆机构的混沌运动 被引量:2

Chaotic Motion of the Underactuation Planar Five-bar Mechanism with Variable Parameter
原文传递
导出
摘要 在机构运动过程中,如果机构的参数发生了变化,则机构的运动状态也必定会发生变化。以欠驱动平面五杆机构为例,研究滑块质量动态变化对机构运动的影响。以Simulink/SimMechanics和排列熵为主要研究工具,通过对机构混沌运动边缘分析,确定出了机构周期(准周期)运动、混沌运动的条件。在此基础上,分别以周期(准周期)运动和混沌运动为机构的初始运动状态,研究滑块质量有规律地增加的情况下机构的运动状态。研究表明,无论机构初始运动状态是周期(准周期)的还是混沌的,经过一定的时间之后,机构的运动状态都是混沌的。 The motion state of a mechanism will be changed when its parameters undergo some changes. Focusing on the impact of the variations of the slider mass on the motions of an underactua- tion planar five--bar mechanism. By means of Simulink/SimMechanics and permutation entropy, the conditions for periodic (quasiperiodic) motion and chaotic motion are found by analysis the edge of cha os. Based on these conditions, the motions of the mechanism starting with periodic (quasiperiodic) mo tion and chaotic motion are studied under the circumstance that the slider mass is increased regularly. The results show that the motion of the mechanism will eventually be chaotic no matter what kinds of motion the mechanism begins with.
出处 《机械传动》 CSCD 北大核心 2015年第1期8-12,共5页 Journal of Mechanical Transmission
基金 国家自然科学基金(51175437)
关键词 欠驱动平面五杆机构 排列熵 变参数 混沌边缘 Underactuation planar five--bar mechanism Permutation entropy Varying parameter Edge of chaos
  • 相关文献

参考文献16

  • 1Farahanehi F,Shew S W.Chaotic and Periodic Dynamics of Slider-Crank Mechanism with Slider Clearance[J].Journal of Sound and Vibration,1994,177(3):307-324.
  • 2史绍熙,刘双喜,宁智.带间隙副的曲柄-连杆机构中的混沌现象[J].内燃机学报,2000,18(2):183-186. 被引量:5
  • 3李开富,李立.双杆摆机构中混沌现象的数值分析[J].机械科学与技术,2002,21(4):596-599. 被引量:4
  • 4李哲.一种浑沌振动筛机构[J].北京工业大学学报,1994,20(1):1-5. 被引量:5
  • 5Li Z.Chaotic vibration sieve[J].Mechanism and Machine Theory,1995,30(4):613-618.
  • 6覃玉祝,谢进,陈永,陈江瑜,何江波.混沌振动筛机构的研究[J].机械设计,2011,28(7):17-20. 被引量:13
  • 7Duchesne B,Fischer C W,Gray C G,et al.Chaos in the motion of an inverted pendulum:An under graduate laboratory experiment[J].American Journal of Physics,1991,59(11):987-989.
  • 8Bandt C,Pompe B.Permutation entropy:A natural complexity measure for time series[J].Physical Review Letters,2002,88(17):1-4.
  • 9Nadia M,Aime L E,Francesco C M,et al.Analysis of Absence Seizure EEG via Permutation Entropy Spatio-temporal Clustering[C]//Proceedings of the International Joint Conference on Neural Networks United States:Institute of Electrical and Electronics Engineers Inc,2011:1417-1422.
  • 10Nicolaou N,Georgiou J.Permutation Entropy:A New Feature for Brain-computer Interfaces[C]//2010IEEE Biomedical Circuits and Systems Conference,BioCAS 2010.United States:IEEE Computer Society,2010:49-52.

二级参考文献51

共引文献117

同被引文献19

  • 1王东风,韩璞.基于粒子群优化的混沌系统比例-积分-微分控制[J].物理学报,2006,55(4):1644-1650. 被引量:11
  • 2牛培峰,张君,关新平.基于遗传算法的混沌系统二自由度比例-积分-微分控制研究[J].物理学报,2007,56(7):3759-3765. 被引量:5
  • 3闻邦春 顾家柳 夏松波.高等转子动力学-理论、技术与应用[M].北京:机械工业出版,2000.113-122.
  • 4克利宗AC.转子动力学弹性支承[M].董师予,译.北京:科学出版社,1987.
  • 5ERKAYA S,UZMAY I..Effects of balancing and link flexibility on dynamics of a planar mechanism having joint clearance[J].Scientia Iranica,2012,19(3):483-490.
  • 6PAULO Flores.A parametric study on the dynamic response of planar multibody systems with multiple clearance joints[J].Nonlinear Dynamics,2010,61(4):633-653.
  • 7TOMASZ Stachowiak,TOSHIO Okada.A numerical analysis of chaos in the double pendulum[J].Chaos,Solitons and Fractals,2006,29:417-422.
  • 8FRADKOV A L,EVANS R J.Control of chaos:methods and applications in engineering[J].Annual Reviews in Control,2005,29(1):33-56.
  • 9GHEZZI L L,PICCARDI C.PID control of chatic system:an application to an epidemiological model[J].Automatica,1997,33(2):181-191.
  • 10LANGTON C G.Computation at the edge of chaos:phase transitions and emergent computation[J].Physica D:Nonlinear Phenomena,1990,42(1-3):12-37.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部