摘要
介绍了支持向量机(SVM)的数学原理和最小二乘支持向量机(Least Squares Support Vector Machines,LSSVM)的数学原理与应用研究。在支持向量机中采用的是二次规划方法,而最小二乘支持向量机则用最小二乘线性系统作为损失函数从而取代它,这样就利用等式约束的方法取代了不等式约束,最终演变为对线性方程组的求解,使求解的速度得到提高,求解的收敛精度得到提升。将最小二乘支持向量机与偏最小二乘法、标准支持向量机进行了对比。最终表明,LS-SVM计算结果更准确,更简单,内存的占有量也较少,计算时间短,耗时少,是一个很有应用价值的研究方向。
出处
《大庆师范学院学报》
2014年第6期30-32,共3页
Journal of Daqing Normal University