期刊文献+

纺织材料设计反问题的贝叶斯统计推断方法 被引量:2

Bayesian statistical inference method for inverse problems of textile material design
下载PDF
导出
摘要 针对具有不适定性纺织材料设计反问题,给出了利用贝叶斯蒙特卡洛方法求解纺织材料单参数和多参数反演问题的一种新方法。因织物稳态热湿传递模型的非线性和反问题的不适定性,基于贝叶斯统计推断方法的纺织材料类型、厚度、孔隙率等参数的后验概率分布推断是一种有效的方法。这种方法将参数的先验信息描述为先验概率密度,构建了纺织材料设计反问题的数值算法。数值实验结果表明,与马尔科夫链蒙特卡洛抽样算法相匹配的贝叶斯推理可用来求解纺织材料设计反问题。 Aiming at the ill-posed of the inverse problem of textile material design (IPTMD),a new approach based on Bayesian Markov Chain Monte Carlo (Bayesian-MCMC) method was proposed for solving the problem of single and multiple parameter determination.Since the heat and moisture transfer model is non-linear and the IPTMD is ill-posed,it is proved that posterior distribution for the model parameters such as the heat conductivity,thickness and porosity of the material is an effective method.This method describes prior information of parameters as prior probability density,constructing numerical algorithms of the IPTMD.The numerical results show that Bayesian inference method agreed with Markov Chain Monte Carlo sampling algorithm can be applied to solve the IPTMD.
出处 《纺织学报》 EI CAS CSCD 北大核心 2015年第1期23-29,共7页 Journal of Textile Research
基金 国家自然科学基金资助项目(11071221 11471287) 浙江省高校重中之重纺织材料与工程一级学科和浙江省服装工程技术研究中心开放基金项目(2013KF10) 浙江医学高等专科学校科研项目(2014XZA01)
关键词 纺织材料 设计 反问题 贝叶斯推断 单参数 多参数 textile material design inverse problem Bayesian inference single parameter multiple parameters
  • 相关文献

参考文献9

  • 1徐定华,陈远波,程建新.低温环境下纺织材料类型设计反问题[J].纺织学报,2011,32(9):24-28. 被引量:8
  • 2CUI Peng, XU Dinghua. Simultaneous determination of thickness and heat conductivity in fabric design: steady- state modeling and PSO algorithms[J]. Journal of Fiber Bioengineering and Informatics, 2013 ( 2 ) : 195 - 204.
  • 3KAIPIO J, SOMERSALO E. Statistical andComputational Inverse Problems [M]. New York: Springer, 2004:91 - 108.
  • 4陈海洋,滕彦国,王金生,宋柳霆,周振瑶.基于Bayesian-MCMC方法的水体污染识别反问题[J].湖南大学学报(自然科学版),2012,39(6):74-78. 被引量:18
  • 5WANG Jingbo, ZABARAS Nicholas. A Bayesian inference approach to the inverse heat conduction problem [ J ]. International Journal of Heat and Mass Transfer, 2004 (47) :3927 - 3914.
  • 6WANG Jingbo, ZABARAS Nicholas. Using Bayesian statistics in the estimation of heat source in radiation[J]. International Journal of Heat and Mass Transfer, 2005 (48) : 15 - 29.
  • 7高思云,杨晨.利用贝叶斯模型进行热参数估计[J].系统仿真学报,2006,18(6):1462-1465. 被引量:12
  • 8XU Dinghua, CHENG Jianxin, ZHOU Xiaohong. A model of heat and moisture transfer through parallel pore Textiles[J]. Proceedings of Textile Bioengineering and Informatics Symposium, 2010 ( 5 ) : 1139 - 1144.
  • 9XU Dinghua, GE Meibao. Thickness determination in textile meterial design:dynamic modeling and numerical algorithms [J].Inverse Problems, 2012 ( 28 ) :035011.

二级参考文献21

  • 1闵涛,周孝德,张世梅,冯民权.对流-扩散方程源项识别反问题的遗传算法[J].水动力学研究与进展(A辑),2004,19(4):520-524. 被引量:31
  • 2戴会超,王玲玲.工程水力学反问题研究及应用[J].四川大学学报(工程科学版),2006,38(1):15-19. 被引量:4
  • 3严齐斌.河流水质参数估计的蒙特卡罗方法[J].水利水电技术,2006,37(10):14-16. 被引量:8
  • 4XU Dinghua, CHENG Jianxin, ZHOU Xiaohong. An inverse problem of thickness design for single layer textile material under low temperature [ J ]. Journal of Math-for-Industry, 2010,2 ( B - 4) : 139 - 146.
  • 5HOOKE R, JEEVES T A. "Direct search" solution of numerical and statistical problems[ J]. J Assoc Comput Mach, 1961 (8): 212-229.
  • 6VIRGINIA Torczon. On the convergence of pattern search algorithms [ J]. SIAM Journal of Optimization, 1997, 7(1): 1-25.
  • 7XU Dinghua, CHENG Jianxin, ZHOU Xiaohong. A model of heat and moisture transfer through the parallel pore textiles [ C ]//Proceeding of Textile Bioengineering and Informatics Symposium. Hong Kong: TBIS Limited Binary Information Press, 2010 : 1151 - 1156.
  • 8FAN Jintu, LUO Zhongxuan, LI Yi. Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation [ J ].International Journal of Heat and Mass Transfer, 2000 (43) : 2989 - 3000.
  • 9WU Hunjun, FAN Jintu. Study of heat and moisture transfer within muhi-layer clothing assemblies consisting of different types of battings [ J ]. International Journal of Thermal Sciences, 2008, 47(5 ) : 641 - 647.
  • 10ANDRIEU C, FREITAS N D, DOUCET A, et al. An introduction to MCMC for machine learning [J]. Machine Learning, 2003, 50: 5-43.

共引文献35

同被引文献23

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部