期刊文献+

基于BP神经网络二维码区域提取 被引量:3

BP neural network based on the two-dimensional code region extraction
下载PDF
导出
摘要 在复杂背景下的二维码区域定位一直是QR Code二维条码解码过程中的难题之一。二维码区域扫描定位是通过二维码的图形特点来实现,其存在扫描定位效率较低的缺点。为此提出在扫描定位之前通过图像处理结合BP神经网络实现QR Code二维码条码区域提取方法。火车票通过图像预处理得到可能是二维码的区域块,提取经图像处理后的二维码区域块图像特征并结合BP神经网络过滤出正确的二维码区域。此方法实现了寻找一幅图像中二维码区域的图像,结合二维码图形扫描定位方法,提高了二维码扫描定位的效率,得到了较好的效果。 A two-dimensional code location in complex background is always one of the difficult problems of QR Code two- dimensional barcode decoding process. The two-dimensional code region scanning positioning is realized by the graphical features of two-dimensional codes. Its disadvantage is low efficiency of scanning positioning. This paper combines BP neural network to realize QR Code two-dimensional bar code region extraction method by processing the image in the scanning position before. Train tickets are probably block two-dimensional code by image preproeessing, feature is extracted by regional image two-dimensional code image processing and BP neural network filtering out the two-dimensional code area in the right. This method realizes the image for a two- dimensional code image regions, combining with the two-dimensional code image scanning positioning method, improves the efficiency of the two-dimensional code scanning and positioning, and good effect is obtained.
作者 蓝杰 张浩然
出处 《微型机与应用》 2015年第1期50-52,58,共4页 Microcomputer & Its Applications
关键词 BP神经网络 QR Code二维码 区域提取 图像预处理 BP neural network the QR-Code code region extraction image preprocessing
  • 相关文献

参考文献4

二级参考文献12

  • 1刘慧娟.一种快速响应码图像的分割和校正方法[J].电子测量与仪器学报,2006,20(1):32-35. 被引量:14
  • 2陈媛媛,施鹏飞.二维条形码的识别及应用[J].测控技术,2006,25(12):17-19. 被引量:30
  • 3International Organization for Standardization. ISO/IEC 16022-2006 Information Technology-Automatic Identification and Data Capture Techniques-Data Matrix Bar Code Symbology Specification[S]. Geneva: International Organization for Standardization, 2006.
  • 4Ouaviani E, Pavan A, Bottazzi M. A common image processing framework for 2D barcode reading [C]//Proceedings of Seventh International Conference on Image Processing and Its Applications. Manchester: IEEE, 1999: 652-655.
  • 5Arivazhagan classification S, Ganesan L, Kumar T G S. Texture using curvelet statistical and co-occurrence features [C]// Proceedings of 18th International Conference on Pattern Recognition. Hong Kong, 2006: 938- 941.
  • 6Manjunath B S, Chellappa R. Unsupervised texture segmentation using Markov random field models [J]. IEEE Transactions on Pattern Analysis and Machine Learning, 1991, 13(5):478-482.
  • 7Sandler R, Lindenbaum M. Gabor filter analysis for texture segmentation [C]// 2006 Conference on Computer Vision and Pattern Recognition Workshop. NewYork, 2006: 178-186.
  • 8Jain A K, Chen Y. Bar code localization using texture analysis [C]// Proceedings of the Second International Conference on Document Analysis and Recognition. Tsukuba, Japan, 1993: 41-44.
  • 9国家质量技术监督局.中华人民共和国国家标准--快速响应矩阵码(QR Code)[S],GB/T18284.北京:中国标准出版社,2000
  • 10Gonzalez R C,Woods R E.Digital Image Processing.Second Edition[M].北京:电子工业出版社,2003

共引文献46

同被引文献14

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部