期刊文献+

含明渠尾水系统小波动调节稳定性分析 被引量:3

Analysis of stability of tailrace open channel in small fluctuation governing system
原文传递
导出
摘要 考虑明渠水位波动的影响,建立含尾水明渠水电站小波动调节线性化的空间状态数学模型,并转化为传递函数的形式,利用霍尔维茨稳定判据,分析尾水明渠水位波动对调节系统稳定域的影响。研究表明:尾水明渠对不带尾水调压室的电站稳定域影响不大,明渠长度和初始水深对带尾水调压室稳定域有明显的影响,考虑尾水明渠水位波动对调速系统小波动稳定有利。 linearized space state model is established in consideration of open channel water level fluctuations, which is transformed to transfer function to describe small fluctuation in hydropower station. Effect of water level fluctuations in tail water open channel on regulating system stability region was analyzed based on Hurwitz stability criterion. The results show that open channel has slight influence on stability range in hydropower station without tailrace surge chamber; length and depth of open channel has an evident influence on stability region in in hydropower station with tailrace surge chamber, and water level fluctuation in open tailrace tunnel make for the stability of small fluctuation transient process.
出处 《水力发电学报》 EI CSCD 北大核心 2015年第1期161-168,188,共9页 Journal of Hydroelectric Engineering
基金 国家自然科学基金(51039005)
关键词 水电工程 尾水明渠 调速系统 小波动 稳定域 hydropower engineering tailrace open channel regulating system small fluctuation stability region
  • 相关文献

参考文献10

二级参考文献45

共引文献37

同被引文献38

  • 1周建旭,张健,刘德有.双机共变顶高尾水洞系统小波动稳定性研究[J].水利水电技术,2004,35(12):64-67. 被引量:10
  • 2杨建东,陈鉴治,赖旭.上下游调压室系统水位波动稳定分析[J].水利学报,1993,25(7):50-56. 被引量:8
  • 3凌代俭,沈祖诒.水轮机调节系统的非线性模型、PID控制及其Hopf分叉[J].中国电机工程学报,2005,25(10):97-102. 被引量:40
  • 4Krivehenko G I, Kvyatkovskaya E V, Vasilev A B, et al. New design of tailrace conduits of hydropower plant [J]. Hydrotechnical Construction, 1985, 19(7) : 352-357.
  • 5美国土木工程学会.水电工程规划设计土木工程导册[M].第二卷.规划设计总院,中国水利水电科学研究院译.(英文版1990年).
  • 6Parker T S, Chua L O. Practical Numerical Algorithms for Chaotic Systems [M]. New York: Springer-Verlag World Publishing Corp., 1989.
  • 7Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation[ M ]. London: Cambridge University Press, 1981.
  • 8Nguyen L H, Hong K S. Hopf bifurcation control via a dynamic state-feedback control[J]. Physics Letters A, 2012, 376: 442-446.
  • 9Zhang R, Wang Y, Zhang Z D, et al. Nonlinear behaviors as well as the bifurcation mechanism in switched dy- nat hical systems[ J ]. Nonlinear Dynamics, 2015, 79( 1 ) : 465-471.
  • 10Sriastava K N, Srivastava S C. Application of Hopf bifurcation theory for determining critical value of a generator control or load parameter[J]. Electrical Power & Energy Systems, 1995, 17(5) : 347-354.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部