期刊文献+

一种基于视觉注意模型的SSIM改进方法 被引量:1

An Improved Method of SSIM Based on Visual Attention Model
下载PDF
导出
摘要 图像质量评价是图像处理领域的一个研究热点。文中将视觉注意模型结合到传统结构相似度(SSIM)方法中,尝试将视觉注意机制的研究成果引入到图像质量评价领域,以获取更好的评价效果。新方法采用Itti视觉注意计算模型提取图像的全局显著图,然后用中介真值程度(MMTD)理论确定各局部窗口的权值,在评价过程中对显著程度高的区域给予更高的权重。实验结果表明改进后的MMTD-SSIM算法在感兴趣区域突出的图像质量评价中较传统SSIM算法更加准确有效,更加接近人类视觉的主观评价。 Image quality assessment is a hot research topic in the field of image processing. In this paper,the study of the visual attention mechanism is introduced into the image quality assessment through combination of visual attention model into SSIM,trying to obtain bet-ter evaluation result. The new method uses Itti visual attention model to extract saliency map,then determines local weights with the theo-ry of MMTD,in the process of evaluation of salient area for a higher weight. The experiment results show that MMTD-SSIM algorithm is more accurate and effective than SSIM in the image quality assessment of image with outstanding region of interest,and more close to the human visual subjective assessment.
作者 安军 周宁宁
出处 《计算机技术与发展》 2015年第1期226-229,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61170322)
关键词 图像质量评价 视觉注意模型 显著图 结构相似度 中介真值程度 Image Quality Assessment(IQA) visual attention model saliency map Structural Similarity Image Measurement(SSIM) Measure of Medium Truth Degree(MMTD)
  • 相关文献

参考文献12

  • 1周景超,戴汝为,肖柏华.图像质量评价研究综述[J].计算机科学,2008,35(7):1-4. 被引量:72
  • 2Wang Zhou, Bovik A C, Lu Ligang. Why is image quality as- sessment so difficult? [ C ]//Proc of 2002 IEEE international conference on acoustics, speech, and signal processing. [ s. 1. ] :IEEE,2002.
  • 3Wang Z, Sheikh H R, Bovik A C. Objective video quality as- sessment[ M ]//The handbook of video database:design andapplications. Boca Raton, Florida: CRC Press, 2003:1041 - 1078.
  • 4Sheikh H R,Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms[ J]. IEEE Transactions on Image Processing, 2006,15 ( 11 ) : 3440- 3451.
  • 5Wang Z, Alan C B, Harold R S, et al. Image quality assess- ment:from error visibility to structural similarity [J]. IEEE Transactions on Image Processing,2004,13 (4) :600-612.
  • 6蒋刚毅,黄大江,王旭,郁梅.图像质量评价方法研究进展[J].电子与信息学报,2010,32(1):219-226. 被引量:177
  • 7Wang B, Wang Z B, Liao Y P, et al. HVS-based structural im- age quality assessment[ C]//Proceeding of ICSP. [ s. 1. ] : [ s. n. ] ,2008:1194-1197.
  • 8洪龙,肖奚安,朱梧槚.中介真值程度的度量及其应用(I)[J].计算机学报,2006,29(12):2186-2193. 被引量:79
  • 9Itti L,Koch C,Niebur E. A model of saliency-based visual at- tention for rapid scene analysis[ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 1998,20 ( 11 ) : 1254- 1259.
  • 10hti L, Koch C. Computational modelling of visual attention [ J ]. Nature Reviews Neuroscience ,2001,2 ( 3 ) : 194-203.

二级参考文献110

共引文献323

同被引文献18

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部