摘要
针对集气管压力系统具有强干扰、强耦合、非线性、多参数等特性,依据逆系统解耦原理,分析了集气管压力系统数学模型的可逆性;采用对非线性具有较强逼近能力的BP神经网络,逼近集气管压力系统的逆系统;神经网络逆系统与原系统构成伪线性解耦复合系统,实现集气管压力系统的神经网络逆解耦复合控制。仿真结果表明该方法实现了系统解耦,具有一定的应用性。
For collectors'pressure system strong interference,coupled,nonlinear,multi-parameter and oth-er characteristics,based on the inverse system decoupling principle,the reversibility of the mathematical model of the gas collectors'pressure system is analyzed.BP neural network which has strong nonlinear ap-proximation ability is applied,to approximate inverse system of gas collectors'pressure system.Neural net-work inverse system with the original system composes of the pseudo linear decoupling composite system. The neural network inverse decoupling control of gas collectors'pressure system is implemented.The simu-lation results show that this method realizes decoupling,has a certain application.
出处
《河北联合大学学报(自然科学版)》
CAS
2015年第1期95-99,共5页
Journal of Hebei Polytechnic University:Social Science Edition
基金
唐山市科学技术研究与发展计划项目
项目编号:11110211a
关键词
集气管压力
神经网络
逆系统
解耦控制
MATLAB/SIMULINK
gas collectors pressure
neural network
inverse system
decoupling control
MATLAB/SIMU-LINK