期刊文献+

基于光致形变材料的光驱动微夹钳 被引量:5

An Optically Driven Microgripper Based on Photostrictive Materials
下载PDF
导出
摘要 针对目前微夹钳存在的一些问题,提出了一种基于光致形变材料镧改性锆钛酸铅(PLZT)双晶片的光驱动微夹钳.首先对光微夹钳中的核心部件PLZT陶瓷的光致形变特性进行了研究,建立了PLZT陶瓷的新型光致伸缩模型;其次对PLZT双晶片式悬臂梁结构的驱动特性进行了分析;最后对柔性铰链放大结构进行了设计,并对其柔性铰链的承载能力进行了理论计算.计算结果表明,柔性铰链的承载能力满足使用要求,光微夹钳可实现远程光控而不受电磁干扰,可自主控制夹持与释放动作,其放大机构的放大倍数为24倍,且最大钳口距离可达3.880mm,基本满足大部分微型零件的操作需求,具有很好的通用性和适用性. The microgripper is widely used in microassembly and microoperation application.Aiming at the problem of the existent microgripper,an optical microgripper based on the PLZT bimorph cantilever structure was presented.As the core component of optical microgripper,the photostrictive effect of PLZT ceramic was studied and a novel photostrictive mathematical model was established.Besides,the drive characteristic of PLZT bimorph was derived.Furthermore,the flexible hinged magnifying mechanism was designed and the theoretical calculation of the loading capacity of flexure hinge was conducted.The calculation results show that the carrying capacity of flexure hinges can meet the operating requirements.The optical microgripper can provide wireless remote optically control without electromagnetic disturbance and can pick and place controlled by the illumination.A displacement amplification of 24 and a maximum stroke of 3.880 mm are achieved,which can satisfy the operating requirement of most micro-objects.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第12期1681-1687,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(51205205) 中国博士后基金(2012M521083) 江苏省科研创新计划(CXZZ13_0191)资助项目
关键词 光致形变材料 微夹钳 光驱动 数学模型 photostrictive material microgripper optically-driven mathematical model
  • 相关文献

参考文献18

  • 1Agnus J, Nectoux P, Chaillet N. Overview of micro- grippers and design of a micromanipulation station based on a MMOC microgripper [C]//Proceedings of 2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Piscataway, NJ: IEEE Press, 2005: 117-123.
  • 2Menciassi A, Eisinberg A, Izzo I, et al. From macro to micro manipulation: models and experiments [J]. IEEE/ASME Transactions on Mechatronics, 2004, 9 (2) : 311-320.
  • 3Volland B E, Heerlein H, Rangelow I W. Electro- statically driven microgripper [J]. Microelectronic Engineering, 2002, 61-62: 1015-1023.
  • 4CHEN Tao, SUN Lining, CHEN Liguo, et al. A hybrid-type electrostatically driven microgripper with an integrated vacuum tool [J]. Sensors and Actuators A: Physical, 2010, 158(2): 320-327.
  • 5王代华,杨群.一种压电致动微夹钳及其开环位移特性[J].纳米技术与精密工程,2010,8(1):47-53. 被引量:13
  • 6Zubir M N M, Shirinzadeh B, Tian Y L. A new de- sign of piezoelectric driven compliant-based micro- gripper for micromanipulation [J]. Mechanism and Machine Theory, 2009, 44(12): 2248-2264.
  • 7虞启凯,游有鹏,韩江义.集成三维力传感器的微夹持器设计与试验[J].上海交通大学学报,2012,46(6):972-976. 被引量:5
  • 8席文明,钟辉.电磁力驱动的微夹持技术[J].纳米技术与精密工程,2008,6(3):195-198. 被引量:10
  • 9Kim D H, Lee M G, Kim B, etal. A superelastic al- loy mierogripper with embedded electromagnetic actu- ators and piezoelectric force sensors: numerical and experimental study [J]. Smart Materials and Struc- tures, 2005, 14(6) : 1265-1272.
  • 10Andersen K N, Carlson K, Petersen D H, et al. Electrothermal microgrippers for pick-and-place oper- ations [J]. Microelectronic Engineering, 2008, 85(5- 6) : 1128-1130.

二级参考文献43

共引文献155

同被引文献27

  • 1姜晶,岳洪浩,邓宗全,TZOU Horn-sen.基于0-3方向极化的PLZT作动器开口圆柱壳主动振动控制[J].振动与冲击,2013,32(11). 被引量:1
  • 2杨建新,汪劲松,郁鼎文.空间并联机构运动学与动力学逆解的模块化计算方法[J].机械工程学报,2005,41(5):104-107. 被引量:16
  • 3吕遐东,黄心汉,蔡建华.具备多操作手协调的微装配机器人系统[J].华中科技大学学报(自然科学版),2006,34(11):70-73. 被引量:4
  • 4黄学良,叶飞.基于新型光电材料PLZT的光电机研究[J].光电工程,2007,34(12):138-144. 被引量:3
  • 5I.i Yangmin, Xu Qingsong. Development and assess- ment of a novel decoupled XY parallel microposition- ing platform [J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(1):125-135.
  • 6Chu Chi-liang, Fan Sheng-hao. A novel long travel piezoelectric-driven linear nanopositioning stage [J]. Precision Engineering, 2006, 30 (1) : 85-95.
  • 7Mukhopadhyay D, Dong Jingyan, Eakkachai P, et al. A SOI-MEMS-based 3-DOF planar parallel kine- matics nano positioning stage[J]. Sensors and Actua- tors A, 2008, 147(1) :340-351.
  • 8Tian Y, Shirinzadeh B, Zhang D. Design and dynam ics of a 3-DOF flexure-based parallel mechanism or micro/nano manipulation [J]. Mieroeleetronic Engi- neering, 2010,87(2) :230-241.
  • 9Gawthrop P J, Bevan (; P. Bond graph modeling [J]. IEEE Control Systems Magazine, 2007, 27(2) : 24-25.
  • 10I brahim Y, Omiirlii V E,Ahmet S. A novel visual ization technique in bond graph methodfor modeling of a generalized stewart platform EC// Proceedings of the 2008 1EEE International Conference on Robotics and Biomimetics. Bangkok, Thailand: IEEE, 2009: 780 785.

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部