期刊文献+

一维六方准晶有限板孔边对称反平面双裂纹问题的边界配置法 被引量:3

Boundary Collocation Method for Anti-Plane Problems of One-Dimensional Hexagonal Quasicrystals with Cracks
下载PDF
导出
摘要 从断裂力学的观点出发,采用边界配置法研究了一维六方准晶中带双裂纹的圆孔口反平面问题.通过选取恰当的位移函数,求得声子场与相位子场的应力和应力强度因子.而板的边界条件由边界配置法近似满足.通过数值算例,讨论了裂纹长度、板的宽度、幂级数项数以及圆孔半径等对应力强度因子的影响.结果表明圆孔半径对应力强度因子的影响非常明显.在有限大板与无限大板两种情况下,裂纹长度与幂级数项数对应力强度因子的影响恰好相反. Base on the theory of fracture mechanics, the anti-plane problems of one-dimensional hexagonal quasicrystals with two symmetrical cracks were investigated by using the boundary collocation method. The numerical results for stresses in the phonon and quantum fields and related stress intensity factor were obtained by selecting the appropriate displacement function. It is shown that only the plate boundary conditions are needed to be satisfied approximatively with the boundary collocation method. The influence of the radius of circular hole, the length of the crack, the width of the plate and the number of the power series on the stress intensity factor is discussed through the numerical examples. It is shown that the influence of the hole's radius on the stress intensity factor is very obvious. The influence of the crack's length and the number of power series on the stress intensity factor is on the contrary in the limited plate and infinite plate.
作者 方丹 李星
出处 《力学季刊》 CSCD 北大核心 2014年第4期595-603,共9页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(11362018 51061015)
关键词 一维六方准晶 边裂纹 反平面剪切 边界配置法 应力强度因子 one-dimensional hexagonal quasicrystals edge crack anti-planar shear boundary collocation method stress intensity factor
  • 相关文献

参考文献12

二级参考文献86

共引文献67

同被引文献50

  • 1肖万伸,张春雨,邹伟生.一维六方准晶复合材料界面层中螺型位错分析[J].材料科学与工程学报,2014,32(2):215-218. 被引量:3
  • 2葛龙桂,赵晗.08Cr_2AlMo钢低倍星状裂纹分析[J].物理测试,2005,23(6):32-35. 被引量:5
  • 3Wang Xu.TIME-HARMONIC DYNAMIC GREEN'S FUNCTIONS FOR ONE-DIMENSIONAL HEXAGONAL QUASICRYSTALS[J].Acta Mechanica Solida Sinica,2005,18(4):302-306. 被引量:3
  • 4马海龙,李星.半无限大功能梯度压电材料中反平面Yoffe型运动裂纹[J].兰州大学学报(自然科学版),2006,42(5):90-95. 被引量:5
  • 5WANG X. The general solution of one-dimensinal hexagonal quasicrystal[J]. Mechanics Research of Communicaiton, 2006, 33(4):576-580.
  • 6FAN T Y. Mathematical theory of elasticity of quasicrystals and its applications[M]. Beijing: Science Press, 2010.
  • 7GAO Y, RICOEUR A, Three-dimensional Green's function for two-dimensional quasi-crystal bimaterials[J]. Proceedings of the Royal Society A, 2011,467(2133):2622-2642.
  • 8YANG L Z, GAO Y, ERNIAN P, et al. An exact solution for a multilayered two-dimensional decagonal quasicrystal plate[J]. International Journal of Solids and Structures, 2014, 51 (9): 1737-1749.
  • 9GUO J H, JING Y, RIGULENS S. A semi-inverse method of a Griffith crack in one-dimensional hexagonal quasicrystals [J] Applied Mathematics and Computation, 2013, 219(14):7445 -7449.
  • 10GUO J H, LU Z X. Exact solution of four cracks originating from an elliptical hole in one-dimensional hexagonal quasicrystals[J].Applied Mathematics and Computation, 2011, 217(22):9397-9403.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部