期刊文献+

一种求解Euler方程的新型高阶精度数值方法 被引量:1

A Novel High-Order Numerical Method for Solving Euler Equations
下载PDF
导出
摘要 提出了一种求解Euler方程的新型高阶精度数值方法.该数值方法基于一种新的矢通量分裂格式,将矢通量项分裂成压力通量项和对流通量项.与传统矢通量分裂格式相比,新的矢通量分裂格式能够更好地捕捉特征场内的中间特征波,从而增强格式的分辨率.同时,为了提高这种矢通量分裂格式的空间精度,我们在近似求解压力通量项黎曼问题时对界面处的独立物理变量进行高阶插值.在时间步上,采用显式最优的三阶龙格-库塔方法进行推进.数值试验表明,与传统数值方法相比,本文提出的新方法同时具有高精度和高分辨率的优点. A novel nttmerical method was developed for solving Euler equations. The principal strategy of this method was to combine a first-order flux-vector splitting scheme characterized by accurate resolution of intermediate characteristic fields and a fourth-order compact MUSCL TVD interpolation reconstruction step of primitive flow variables at interface for the generalized Riemann problem. The optimal three-order Runge-Kutta method was employed in time integration. Through some benchmark test problems for Euler equations in both one and two spatial dimensions, this novel numerical method demonstrated both high-order accuracy and high resolution.
作者 陈烨
出处 《力学季刊》 CSCD 北大核心 2014年第4期622-631,共10页 Chinese Quarterly of Mechanics
关键词 EULER方程 直接数值模拟 有限差分法 矢通量分裂 高分辨率 Euler equation direct numerical simulation finite difference method flux-vector splitting high resolution
  • 相关文献

参考文献33

  • 1MACCORMACK R W. Numerical solution of the interaction of a shock wave with a laminar boundary layer[C]//Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, 1971 :151-163.
  • 2ZHONG X L, WANG X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annu Rev Fluid Mech, 2012, 44:527-561.
  • 3MARTIN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments[J]. J Fluid Mech, 2007, 570:347-364.
  • 4PIROZZOLI S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J]. J Comput Phys, 2002, 178:81-117.
  • 5PIROZZOLI S. Numerical methods for high-speed flows[J]. Annu Rev Fluid Mech, 2011, 43:163-194.
  • 6EKATERINARIS J A. High-order accurate, low numerical diffusion methods for aerodynamics[J]. Prog Aerosp Sci, 2005, 41:192-300.
  • 7LELE S K. Compact finite difference schemes with spectral-like resolution[J]. J Comput Phys, 1992, 103:16-42.
  • 8MAHESH K. A family of high order finite difference schemes with good spectral resolution[J]. J Comput Phys, 1998, 145:332-358.
  • 9STEGER J L, WARMING R F. Flux vector splitting of the inviscid gas dynamic equations with applications to finite difference methods[J]. J Comput Phys, 1981, 40:263-293.
  • 10LIOU M S, STEFFEN C J. A new flux splitting scheme[J]. J Comput Phys, 1993, 107:23-39.

二级参考文献17

  • 1Yoon S,AIAA J,1986年,24卷,7期,1453页
  • 2马铁犹,计算流体动力学,1986年
  • 3Mason M L,NASATN 1704,1980年
  • 4Liou M S,J Comput Phys,1996年,129卷,364~382页
  • 5Liou M S,J Comput Phys,1993年,107卷,23~39页
  • 6MENG-SING LIOU, CHRISTOPHER J. STEFFEN JR, A New flux splitting scheme[J]. Journal of Computational Physics, 1993, 107: 23-39.
  • 7MENG-SING LIOU, Progress towards an improved CFD method: AUSM+[R]. AIAA-95-1701-CP.
  • 8YASUHIRO WADA, MENG-SING LIOU, A flux splitting scheme With high-resolution and robustness for discontinuities[R]. AIAA 94-0083.
  • 9KYU HONG KIM, JOON HO LEE, OH HYUN RHO, An improvement of AUSM schemes by introducing the pressure-based weight functions[J]. Computer & Fluids, 1998, 3(27): 311-346.
  • 10AGARWAL R K, HALT D W. A modified CUSP scheme in wave/particle split form for unstructured grid Euler flows[R]. Frontiers of Computational Fluid Dynamics,1994.

共引文献27

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部