期刊文献+

纳米尺度压电球壳的径向自由振动分析 被引量:1

Radial Vibration of Nanoscale Piezoelectric Spherical Shells
下载PDF
导出
摘要 基于非局域弹性理论研究了纳米尺度压电球壳的径向自由振动,为了得到控制方程的解析解忽略了非局域效应对电位移的影响.假设球壳沿径向极化,推导了用径向位移表达的非局域微分控制方程.考虑到尺度效应,应用边界条件得到了球壳径向自由振动的频率方程.利用频率方程本文讨论了自然频率与非局域参数以及半径比之间的关系.根据计算结果,径向振动频率受到非局域效应的显著影响. Based on the nonlocal elasticity theory, the radial vibration of nanoscale piezoelectric spherical shells was presented. The influence of nonlocal effect on electric displacement was ignored in order to obtain exact solution of governing equation. The nonlocal differential equation of radial motion was derived in terms of radial displacements. Considering the small-scale effect, the general characteristic equation for radial vibration of spherical shell was obtained by applying boundary conditions. The variations of the frequencies with the nonlocal parameters and radius ratio were examined. It is observed that the frequencies were affected when the size effect was taken into consideration.
作者 辛立波
出处 《力学季刊》 CSCD 北大核心 2014年第4期632-637,共6页 Chinese Quarterly of Mechanics
关键词 压电 球壳 径向自由振动 非局域弹性理论 piezoelectric spherical shells radial vibration nonlocal elasticity theory
  • 相关文献

参考文献8

  • 1ERINGEN A C, EDELEN D G B. On nonlocal elasticity[J]. Int J Eng Sci, 1972, 10(3):233-248.
  • 2REDDY J N. Nonlocal theories for bending, buckling and vibration of beams[J]. Int J Eng Sci, 2007, 45(2):288-307.
  • 3LU P, ZHANG P Q, LEE H P, et al. Non-local elastic plate theories[J]. P Roy Soc A, 2007, 463(2088):3225-3240.
  • 4WANG Q, VARADAN V K. Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes[J]. Smart Mater Struet, 2007, 16(1):178-190.
  • 5FAZELZADEH S A, GHAVANLOO E. Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality[J]. Compos Struct, 2012, 94(3): 1016-1022.
  • 6FAN C Y, ZHAO M H, ZHU Y J, et al. Analysis of micro/nanobridge test based on nonlocal elasticity[J]. Int J Solids Struct, 2012, 49(15):2168-2176.
  • 7FAZELZADEH S A, GHAVANLOO E. Coupled axisymmetric vibration of nonlocal fluid-filled closed spherical membrane shell[J]. Acta Mech, 2012, 223(9):2011-2020.
  • 8GHAVANLOO E, FAZELZADEH S A. Nonlocal elasticity theory for radial vibration of nanoscale spherical shells[J]. Eur J Mech A-Solid, 2013, 41:37-42.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部