摘要
马氏生灭分枝树模型假定节点每次分娩当且仅当生产1个子节点.假定节点每次分娩的产子数是一随机变量的基础上建立了一胎多子的生灭分枝树演化模型,给出模型的存在性证明,并研究生灭分枝树在不同时刻活着和死亡的节点数、连通分支的个数、任一节点在活着的条件下在不同年龄的子节点数、任一节点在临死前的子节点数.
It is assumed that only one son-node is born in each delivery in the model of Markov birth-death branching tree.This paper assumed that the number of son-nodes born in each delivery is a random variable,and develop a model of birth-death branching tree with nodes being multiparous.Existence of this model is shown.We study the numbers of living nodes,dead nodes,connected components,son-nodes of any node at any age,and son-nodes at dying moment.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第6期749-756,共8页
Journal of Shanghai University:Natural Science Edition
基金
国家自然科学基金资助项目(60872060)
上海市自然科学基金资助项目(12ZR1421000)
上海市教委创新基金资助项目(12ZZ193
14YZ152)
关键词
随机图
分枝过程
生灭分枝树
马氏过程
random graph
branching process
birth-death branching tree
Markov process