期刊文献+

一类非线性反应-扩散方程的间断Galerkin谱元方法

Discontinuous Galerkin Spectral Element Methods for Nonlinear Reaction-Diffusion Equations
下载PDF
导出
摘要 提出了一类非线性反应-扩散方程的间断Galerkin谱元方法,在每个子区间上,基本格式采用Legendre-Galerkin方法,非线性项采用Chebyshev-Gauss-Lobatto插值,跳跃项利用中心数值流量处理,时间方向应用4阶低存储Runge-Kutta格式离散.该方法处理某些初值间断问题有效,并可并行实现;给出了该方法半离散格式下的稳定性和收敛性分析,利用Chebyshev-Gauss-Lobatto插值算子在不带权意义下的逼近结果,获得了按L2-模的最优误差估计;最后,给出了连续问题和间断问题的数值算例. Discontinuous Galerkin spectral element methods for nonlinear reaction-diffusion equations are considered.The schemes are basically in the Legendre-Galerkin form.The nonlinear term is interpolated through the Chebyshev-Gauss-Lobatto points.The jump term tackled by the central numerical flux in space variation.The fourth-order low-storage Runge-Kutta scheme is applied for time discrete inside each subinterval.The methods can be used to solve discontinuous initial value problems and implemented in a parallel way.Stability and the optimal rate of convergence in L2-norm for the semi-discrete scheme are shown using the approximate results of the Chebyshev-Gauss-Lobatto interpolation operator without a weight function.Numerical results for the continuous and discontinuous problems are given.
作者 吴华 韩晓飞
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期757-768,共12页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(11171209) 教育部留学回国人员科研启动基金资助项目 上海市自然科学基金资助项目(13ZR1416700)
关键词 间断GALERKIN方法 谱元法 反应-扩散方程 Chebyshev-Gauss-Lobatto插值 discontinuous Galerkin method spectral element method reaction-diffusion equation Chebyshev-Gauss-Lobatto interpolation
  • 相关文献

参考文献14

  • 1CANTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods in fluid dynamics [M]. Berlin: Springer-Verlag, 1998: 375-412.
  • 2GUO B Y. Spectral methods and their applications [M]. Singapore: World Scientific, 1998: 100- 229.
  • 3CANTO C, HUSSAINI M Y, QUARTEaONI A, et al. SpectrM methods: fundaznentMs in single domains (scientific computation) [M]. Berlin: Springer-Verlag, 2006: 117-160.
  • 4CANTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods: evolution to complex geometries and applications to fluid dynamics (scientific computation) [M]. Berlin: Springer- Verlag, 2007: 231-337.
  • 5JOHNSON C, PITARANTA J. An analysis of the discontinuous gMerkin methods for a scMar hyperbolic equation [J]. Mathmetical of Computation, 1986, 46: 1-26.
  • 6STAMM B, BURMAN E, QUARTERONI A. High order discontinuous galerkin method for hyperbolic problems [D], Lausanne: Ecole polytechnique Federale De Lausanne, 2004: 6-19.
  • 7STAMM B, BURMAN E, QUARTERONI A. Spectral discontinuous Galerkin method for hyperbolic problems [D]. Lausanne: Ecole polytechnique Federale De Lausanne, 2005: 7-18.
  • 8HOUSTON P, SCHWAB C, SULI E. Discontinuous hp-finite element methods for adveetion-diffusion problems [J]. SIAM J Number Anal, 2002, 39(6): 2133-2163.
  • 9SHEN J, TANG W. Spectral and high-order methods with applications [M]. Beijing: Science Press, 2006: 105-126.
  • 10SHEN J. Efficient spectral-galerkin method I: direct solves for second- and fourth-order equations using legendre polynomials [J]. SIAM J Sci Comput, 1994, 15(6): 1489-1505.

二级参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部