期刊文献+

基于回弹函数的安全编码构造方法

A Novel Encoding Method of Security Codes Based on the Resilient Functions
原文传递
导出
摘要 本论文通过回弹函数的门限特性实现了一种低复杂度安全码的构造方法,给出了该方法构造的安全码的安全门限,当窃听信道的错误率大于门限概率时,窃听者只能收到随机的信息,因此该方法构造的安全码具有可证明的安全性。该方法可购造二元和多元安全码,其中,该方法构造的多元安全码是目前已知的性能最好的安全码。 A novel construction method of the security codes is presented in this paper, which is based on the resilient functions. The security of proposed security codes is proofed by taking advantage of the threshold of resilient functions. By manipulating both binary and non-binary resilient functions, novel security codes are generated to ensure 0.5 error probability seen by the wiretapper while close to zero at the intended receiver. In particular, the proposed non-binary encoding construction is practically implementable due to low complexity and short code lengths, and is proved to yield the best achievable performance among all the reported short-length security codes.
出处 《网络安全技术与应用》 2014年第12期106-107,共2页 Network Security Technology & Application
基金 航天五院CAST基金资助
关键词 安全编码 回弹函数 门限特性 Security code The springback function Threshold characteristics
  • 相关文献

参考文献7

  • 1C. E. Shannon, "A Mathematical theory of communication, " The t3ell System Technical Journal, vol. 27, pp. 379-423,623q556, luly, Oct, 1948.
  • 2L. H. Ozarow and A. D. Wyner, "Wire tap channel II, "AT&T BellLabs. Tech. J., vol. 63, no. 10, pp. 2135-2157, Dec. 1984.
  • 3A. Thangaraj, S. Dihidar, A. R. Calderbank, S. W. McLaughlin, and J.-M. Merolla, "Applications of LDPC codes to the wiretap channels, " IEEE Trans. Inf. Theory, vol. 53, pp. 2933-2945, August 2007.
  • 4A. Subramanian, A. Thangaraj, M. Bloch, and S. McLaughlin, "Strong secrecy on the binary erasure wiretap channel using large-girth ldpc codes, "Information Forensics and Security, IEEE Transactions on, vol. 6, pp. 585 -594, Sept. 2011.
  • 5H. Wen, P. H. Ho, B. Wu, Achieving Secure Communications over Wiretap Channels via Security Codes om Resilient Functions, IEEE Wireless Communication Letter, vol.3, no. 3, pp. 273-276, 2014.
  • 6Jiirgen Bierbrauer, K. Gopalakrishnan, and D. K. Stinson, "Orthogonal arrays, resilient functions, error-correcting codes, and linear programming bounds," SIAM J. Discrete Math. vol. 9, no. 3, pp. 424-452, 1996.
  • 7P. Camion and A. Canteant, "Construction of t-resilient functions over a finite alphabet , " Proceedings of EUROCRYPT'96, pp. 283-293, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部