期刊文献+

支持异构集群并行的高能物理数据处理系统 被引量:2

High Energy Physics Data Processing System with Parallel Heterogeneous Clusters
下载PDF
导出
摘要 传统集群计算系统无法充分利用本地磁盘的存储资源和I/O,大量网络I/O成为系统瓶颈,导致资源利用率降低,并造成高昂的存储和网络成本。使用Hadoop处理分析作业可有效利用本地磁盘存储和I/O资源,而集群资源统一管理工具Mesos则使用轻量化的设计和高效的通信机制,能在不同计算集群之间动态共享集群资源。为此,分析高能物理数据处理的特点,利用Mesos构建异构集群间资源共享的高能物理实验数据处理系统,实现Torque/Maui和Hadoop集群的集成。测试结果表明,该系统能够在集群间动态分配集群资源,并利用本地存储和磁盘I/O显著降低网络I/O,提高集群资源利用率。 The traditional cluster computing system can not make best of the local disks and disk I/ O resources,therefore the network becomes the bottleneck of the whole system. And this is the reason of low utilization of the cluster resources and high cost on data storage and network equipment. Using Hadoop to process analysis can significantly reduce the pressure on network I/ O by using the local disks as a distributed file system. Mesos is a cluster resource manager with light-weight design and efficient communication mechanisms that can dynamically share resources among clusters. This paper introduces the features of High Energy Physics(HEP),data processing,presents a new HEP data processing system by using Mesos to provide dynamic resource sharing among clusters,and implements integration of Toruqe/ Maui and Hadoop which can avoid the disadvantages. The test result shows that the new system can dynamic distribute the cluster resource,and reduce the network I/ O,improve the resource utilization.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第1期1-5,共5页 Computer Engineering
基金 国家自然科学基金资助项目(11375223 11375221) 国家自然科学基金A3前瞻计划基金资助项目(61161140454)
关键词 高能物理 集群资源管理 资源共享 Mesos工具 HADOOP平台 Torque/Maui系统 High Energy Physics(HEP) cluster resource management resource sharing Mesos tool Hadoop platform Toruqe/Maui system
  • 相关文献

参考文献13

  • 1Staples G.TORQUE Resource Manager[C]//Proceedings of2006ACM/IEEE Conference on Supercomputing.New York,USA:ACM Press,2006.
  • 2Adaptive Computing.Maui[EB/OL].[2014-02-15].http://www.adaptivecomputing.com/products/open-source/maui/.
  • 3Yahoo.Apache Hadoop[EB/OL].[2014-02-15].http://hadoop.apache.org/.
  • 4Dean J,Ghemawat S.Map Reduce:Simplified Data Processing on Large Clusters[J].Communications of the ACM,2008,51(1):107-113.
  • 5Shvachko K,Kuang H,Radia S,et al.The Hadoop Distributed File System[C]//Proceedings of the26th IEEE Symposium on Mass Storage Systems and Technologies.Incline Village,USA:IEEE Press,2010:1-10.
  • 6臧冬松,霍菁,梁栋,孙功星.基于MapReduce的高能物理数据分析系统[J].计算机工程,2014,40(2):1-5. 被引量:9
  • 7Hindman B,Konwinski A,Zaharia M,et al.Mesos:A Platform for Fine-grained Resource Sharing in the Data Center[C]//Proceedings of NSDI’11.Berkeley,USA:USENIX Association,2011:22-22.
  • 8Schwan P.Lustre:Building a File System for1000-node Clusters[C]//Proceedings of2003Linux Symposium.Ottawa,Canada:[s.n.],2003:380-386.
  • 9Hunt P,Konar M,Junqueira F P,et al.Zoo Keeper:Waitfree Coordination for Internet-scale Systems[C]//Proceedings of2010USENIX Conference on USENIX Annual Technical Conference.[S.l.]:USENIX Association,2010:11.
  • 10Ghodsi A,Zaharia M,Hindman B,et al.Dominant Resource Fairness:Fair Allocation of Multiple Resource Types[C]//Proceedings of NSDI’11.Berkeley,USA:USENIX Association,2011:323-336.

二级参考文献19

  • 1Ghemawat S, GobioffH. The Google File System[C]//Proc. of the 19th ACM Symposium on Operating Systems Principles. New York, USA: ACM Press, 2003: 29-43.
  • 2Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters[C]//Proc. of the 6th Symposium on Operating Systems Design & Implementation. San Francisco, USA: ACM Press, 2004: 107-113.
  • 3Chang F, Dean J, Ghemawat S, et al. Bigtable: A Distributed Storage System for Structured Data[J]. ACM Transactions on Computer Systems, 2008, 26(2): 205-218.
  • 4Apache. HADOOP[EB/OL]. (2012-05-01). http://HADOOP. apache.org.
  • 5Bradley D, Dasu S, Maier W, et al. A Highly Distributed, Petascale Migration from dCache to HDFS[C]//Proc. of HEPiX Fall 2011 Workshop. Vancouver, USA: [s. n.], 2011: 1- 24.
  • 6Riahi H, Donvito G, Fanb L. Using HADOOP File System and MapReduce in a Small/Medium Grid Site[J]. Journal of Physics: Conference Series, 2012, 396(4): 50-55.
  • 7Glaser F, Neukirchen H. Analysing High-energy Physics Data Using the MapReduce Paradigm in a Cloud Computing Environment[EB/OL]. (2012-05-11). https://notendur.hi.is/- helmut/publications/VHI-01-2012.pdf.
  • 8The ROOT Team. ROOT[EB/OL]. ,(2010-04-12). http://root. cern.ch.
  • 9Antcheva I, Ballintijn M, Bellenot, et al. ROOT A C++ Framework for Petabyte Data Storage, Statistical Analysis and Visualization[J]. Computer Physics Communications, 2009, 180(12): 1384-1385.
  • 10Apache Hadoop HDFS Architecture Guide[EB/OL]. (2012-03- 22). http://hadoop.apache.org/docs/r 1.0.4/hdfs_design.html.

共引文献8

同被引文献20

  • 1Shvachko K,Kuang H,Radia S,et al.The Hadoop Distributed File System[C]//Proceedings of the 26th IEEE Symposium on Mass Storage Systems and Technologies.Washington D.C.,USA:IEEE Press,2010:1-10.
  • 2Dean J,Ghemawat S.MapReduce:Simplified Data Processing on Large Clusters[J].Communications of the ACM,2008,51(1):107-113.
  • 3Wang Chunguang,Wu Qingbo,Tan Yusong,et al.Locality Based Data Partitioning in MapReduce[C]//Proceedings of the 16th International Conference on Com-putational Science and Engineering.Washington D.C.,USA:IEEE Computer Society,2013:1310-1317.
  • 4Lars G.HBase权威指南(影印版)(英文版)[M].南京:东南大学出版社,2012.
  • 5Bockelman B.Using Hadoop as a Grid Storage Element[J].Journal of Physics:Conference Series,2009,180(1).
  • 6Lassnig M,Garonne V,Dimitrov G,et al.ATLAS Data Management Accounting with Hadoop Pig and HBase[J].Journal of Physics:Conference Series,2012,396(5).
  • 7Glaser F,Neukirchen H,Rings T,et al.Using MapReduce for High Energy Physics Data Analysis[C]//Proceedings of the 16th International Conference on Computational Science and Engineering.Washington D.C.,USA:IEEE Press,2013:1271-1278.
  • 8Apache Thrift[EB/OL].(2012-05-18).http://thrift.apache.org/.
  • 9使用Java Native Interface的最佳实践[EB/OL].(2009-04-08).http://www.ibm.com/developerworks/cn/java/j-jni/.
  • 10高峰,杨连贺.Flex技术与Django开发框架的整合研究[J].计算机与数字工程,2010,38(1):94-96. 被引量:7

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部