期刊文献+

基于HOG与多实例在线学习的目标跟踪算法 被引量:7

Object Tracking Algorithm Based on HOG and Multiple-instance Online Learning
下载PDF
导出
摘要 为实现在局部遮挡、光线变化等复杂背景下的目标跟踪,提出一种基于梯度方向直方图(HOG)与多实例在线学习的目标跟踪算法。利用已标定目标图像的HOG特征空间,结合局部二值模式(LBP)描述方法获取特征向量,构建初始随机蕨检测算子,采用随机多尺度采样方法跟踪每一帧的目标位置和尺寸,并基于多实例在线学习框架,通过检测到的目标样本以及附近的背景样本在线更新检测算子。将该算法与Online Boosting Tracker,MILTracker等在线学习目标跟踪算法在多个标准视频序列中进行比较,实验结果表明,该算法在局部遮挡和光照变化的环境下具有较好的跟踪稳定性,但在抗目标旋转方面有待优化。 In order to achieve effectively stabilized target tracking within partial occlusion,illumination changes and complex background environment,this paper presents an object tracking algorithm based on Histogram of Oriented Gradients(HOG)and Multiple-instance Learning(MIL). Using the HOG feature space of the target block and the background in the first frame with Local Binary Pattern(LBP)descriptor to initialize the initial random ferns,it detects the target location and the objective scale of each frame with random multiple-scale sampling and uses the new target samples and the nearby background samples to update the appearance model within multi-instance learning after each detection. Through the experiments,the algorithm with multiple online tracking algorithms such as Online Boosting Tracker and MILTracker are compared and analyzed in a number of video sequences. The results show that it has a good target tracking stability under the complex environment,especially with partial occlusion and illumination changes,but in the anti-rotation of target,the algorithm has yet to be optimized.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第1期158-163,共6页 Computer Engineering
基金 国家科技重大专项基金资助项目(2011ZX03002-004-02) 教育部高等学校博士学科点专项科研基金资助项目(20113305110002) 浙江省重点科技创新团队基金资助项目(2012R10009-04) 浙江省杰出青年科学基金资助项目(R1110416)
关键词 随机蕨 梯度方向直方图 局部二值模式 多实例学习 在线学习 目标检测 目标跟踪 random ferns Histogram of Oriented Gradient(HOG) Local Binary Pattem(LBP) Multiple-instance Learning(MIL) online learning object detection object tracking
  • 相关文献

参考文献14

  • 1Saffari A,Leistner C,Santner J,et al.Online Random Forests[C]//Proceedings of the12th International Conference on Computer Vision Workshops.Kyoto,Japan:[s.n.],2009:1393-1400.
  • 2Ozuysal M,Calonder M,Lepetit V,et al.Fast Keypoint Recognition Using Random Ferns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(3):448-461.
  • 3Ozuysal M,Fua P,Lepetit V.Fast Keypoint Recognition in Ten Lines of Code[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis,USA:IEEE Press,2007:1-8.
  • 4Villamizar M,Moreno-Noguer F,Andrade-Cetto J,et al.Efficient Rotation Invariant Object Detection Using Boosted Random Ferns[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.San Francisco,USA:IEEE Press,2010:1038-1045.
  • 5Grabner H,Grabner M,Bischof H.Real-time Tracking via On-line Boosting[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.New York,USA:IEEE Press,2006.
  • 6Grabner H,Leistner C,Bischof H.Semi-supervised Online Boosting for Robust Tracking[C]//Proceedings of European Conference on Computer Vision.Marseille,France:[s.n.],2008:234-247.
  • 7Stalder S,Grabner H,van Gool L.Beyond Semisupervised Tracking:Tracking Should Be as Simple as Detection,But not Simpler than Recognition[C]//Proceedings of International Conference on Computer Vision.Kyoto,Japan:[s.n.],2009:1409-1416.
  • 8苏巧平,刘原,卜英乔,黄河.基于稀疏表达的多示例学习目标追踪算法[J].计算机工程,2013,39(3):213-217. 被引量:5
  • 9刘华军,王玉坤.基于HOG及在线多实例学习的目标跟踪算法[J].现代电子技术,2013,36(9):116-120. 被引量:2
  • 10Babenko B,Yang M H,Belongie S.Robust Object Tracking with Online Multiple Instance Learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1619-1632.

二级参考文献10

共引文献5

同被引文献33

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部