期刊文献+

不确定规划中可达关系的快速求解算法 被引量:1

Fast Solving Algorithm of Reachability Relation in Uncertain Planning
下载PDF
导出
摘要 在不确定规划领域中,通常需要在同一个不确定状态转移系统中解决多个规划问题,如果能得到不确定规划中状态之间的可达关系即可方便求解该规划问题,然而现有矩阵乘法求解可达关系时存在算法复杂度高的问题。为此,设计一种快速求解不确定规划中状态之间可达关系的算法,将确定动作和不确定动作区分处理,先求解所有确定动作的可达关系,再采用链表和队列求解不确定动作的可达关系。实验结果表明,与矩阵乘法相比,该算法能得到更全面的可达关系,且求解效率更高。 In uncertain planning field,it is frequent to solve many planning problems over a nondeterministic statetransition system in uncertain planning. So getting the state reachability for the nondeterministic state-transition system can make solving planning problems easier. However,the existing solution matrix multiplication of relations exist the problem of high algorithm complexity. Therefore,this paper presents a fast solving algorithm of reachability relation between the states in uncertain planning. The algorithm determines the certainly action and uncertainty actions separately. It determines the relationships between the certainty action,then solves relations between uncertain actions with lists and queues.Experimental result shows that the algorithm not only can get a more comprehensive relationship,but also has higher efficiency than the matrix multiplication algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第1期196-199,217,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61070232 61272295)
关键词 不确定规划 可达关系 智能规划 模型检测 不确定性 不确定状态转移系统 uncertain planning reachability relation intelligent planning model checking uncertainty uncertain state-transition system
  • 相关文献

参考文献12

二级参考文献47

  • 1吴康恒,姜云飞.基于模型检测的领域约束规划[J].软件学报,2004,15(11):1629-1640. 被引量:17
  • 2Ghallab M, Nau D, Traverso P. Automated Planning Theory and Practice. Morgan Kaufmann Publishers, 2004.
  • 3Weld DS. Recent advances in AI planning. A1 Magazine, 1999,20(2):93-123.
  • 4Yang Q, Wu KH, Jiang YF. Learning action models from plan examples using weighted Max-SAT. Artificial Intelligence, 2007, 171(2-3):107-143.
  • 5Gil Y. Description logics and planning. AI Magazine, 2005,26(2):73-84.
  • 6Cimatti A, Roveri M. Conforrnant planning via symbolic model checking. Journal of Artificial Intelligence Research, 2000,13: 305-338.
  • 7Cimatti A, Pistore M, Rovveri M, Traverso P. Weak, strong, and strong cyclic planning via symbolic model checking. Artificial Intelligence, 2003,147(1-2):35-84.
  • 8Huang W, Wen ZH, Jiang YF, Wu LH. Observation reduction for strong plans. In: Veloso MM, ed. Proc. of the 20th Int'l Joint Conf. on Artificial Intelligence (IJCAI 2007). AAAI Press, 2007. 1930-1935.
  • 9Cimatti A, Roveri M. Conformant planning via model checking and heuristic search. Artificial Intelligence, 2004,159(1-2): 127-206.
  • 10Huang W, Wen ZH, Jiang YF, Chen AX. Comparison between two languages used to express planning goals: CTL and EAGLE. In: Yang Q, Webb G, eds. Proc. of the 9th Pacific Rim Int'l Conf. on Artificial Intelligence (PRICAI 2006). Berlin: Springer-Verlag, 2006. 180-189.

共引文献20

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部