期刊文献+

活性炭固载钯催化剂的制备及催化Ullmann反应的研究 被引量:1

Preparation of Activated Carbon Immobilized Palladium Complex and Its Catalytic Application in Ullmann Reaction
下载PDF
导出
摘要 采用双氧水改性活性炭,增加表面酚羟基的含量,并与硅烷偶联剂[(CH3O)3Si(CH2)3NH(CH2)2NH2]反应,引入双胺基官能团,络合氯化钯,制备了活性炭固载钯催化剂;同时采用Bohem滴定、元素分析(EA)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)、透射电镜(TEM)、电感耦合等离子体质谱仪(ICP-MS)以及多晶X射线衍射(XRD)对制备的催化剂进行了表征,并研究了它对卤代芳烃Ullmann反应的催化性能.实验结果表明:催化剂中钯键载在载体上,钯在载体表面分布均匀,粒径在4 nm左右;该催化剂能够较好地催化卤代芳烃的Ullmann反应,具有较好的重复使用性能,4-碘苯甲醚反应的产率是90.5%,溴代芳烃偶联反应的最高收率为73.6%,氯代芳烃的最高收率为41.4%.催化剂AC-NH(CH2)2NH2-Pd重复使用7次后,溴苯偶联产物的收率为35.9%. Activated carbon anchored palladium complex was prepared via grafting silane coupling agent(CH2O) 3Si(CH2) 3NH(CH2) 2NH2 onto chemically modified activated carbon by H2O2,followed by the complexation palladium chloride.The prepared catalyst was characterized by bohem titration,elemental analysis(EA),fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM),inductively coupled plasma mass spectrometry(ICP-MS),and X-ray diffraction(XRD).The results indicated that palladium particales are immobilized on the carrier via coordination bond in this catalyst and evenly dispersed on the surface of carrier with 4 nm diameter.This immobilized catalyst exhibites higher catalytic activity and reuse capability in the Ullmann reaction of aryl halides.The yield of 4-Iodoanisole coupling is 90.5%.The highest coupling product yield of brominated aromatic is 73.6%,that of chlorinated aromatic is 41.4%.It can be recovered by simple filtration and reused up to 7 times with 35.9% yield.
出处 《海南大学学报(自然科学版)》 CAS 2014年第4期340-345,393,共7页 Natural Science Journal of Hainan University
基金 海南省"中西部高校提升综合实力"资金项目--海南大学教育教学研究项目(hdjy1332)
关键词 活性炭 固载钯催化剂 卤代芳烃 ULLMANN反应 activated carbon immobilized palladium catalyst aryl halides Ullmann reaction
  • 相关文献

参考文献13

  • 1LIN J, HOUPIS I N, LIU R, et al. Copper-catalyzed C-N coupling in the synthesis of integrase inhibitors of immunodeficiency viruses[J]. Organic Process Research & Development, 2014, 18: 205-214.
  • 2YU B, ZHAO Y, ZHANG H, et al. Pd/C-catalyzed direct formylation of aromatic iodides to aryl aldehydes using carbon diox- ide as a C1 resource[J]. Chemical Communications, 2014, 18(50) : 2 330 -2 333.
  • 3IRANPOOR N, FIROUZABADI H, ROSTAMI A. Palladium nanoparticles supported on silica diphenylphosphinite as efficient catalyst for C-O and C-S arylation of aryl halides [ J 1. Applied Organometallic Chemistry, 2013, 27 (9) : 501-506.
  • 4GUAN B T, WANG Y, LIB J, et al. Biaryl construction via ni-catalyzed C-O activation of phenolic carboxylates[ Jl. Journal of the American Chemical Society, 2008, 130(44) : 14 468 -14 470.
  • 5CHEN W W, ZHAO Q, XU M H, et al. Nickel-catalyzed asymmetric Ullmann coupling for the synthesis of axially chiral tetra- ortho-substituted biaryl dials[J]. Organic Letters, 2010, 12(5) : 1 072 -1 075.
  • 6BERGERON-BRLEK M, GIGUE,RE D, SHIAO T C, et al. Palladium-catalyzed Ullmann-type reductive homocoupling of io- doaryl glycosides[ J ]. The Journal of Organic Chemistry, 2012, 77 (6) : 2 971 -2 977.
  • 7CHENG J, ZHANG G, DU J, et al. New role of graphene oxide as active hydrogen donor in the recyclable palladium nanopar- ticles catalyzed Ullmann reaction in environmental friendly ionic liquid/supercritical carbon dioxide system[ J. Journal of Ma- terials Chemistry, 2011, 21 (10) : 3 485 -3 494.
  • 8VARADWAJ G B B, RANA S, PARIDA K. Pd(0) Nanoparticles supported organofunctionalized clay driving C-C coupling reactions under benign conditions through a Pd(0)/Pd(11) redox interplay[ J]. The Journal of Physical Chemistry C, 2014, 118:1 640-1 651.
  • 9MIAO T, WANG L. Immobilization of copper in organic-inorganic hybrid materials : a highly efficient and reusable catalyst for the Ullmann diaryl etherification[ J ]. Tetrahedron Letters, 2007, 48 (1) : 95 -99.
  • 10BOEHM H P. Some aspects of the surface chemistry of carbon blacks and other carbons[Jl. Carbon, 1994, 32(5) : 759 -769.

二级参考文献15

  • 1谢叶香,李金恒,尹笃林.胺作为配体在钯催化偶联反应中应用[J].有机化学,2006,26(8):1155-1163. 被引量:14
  • 2Heck, R. E Org. React. 1982, 27, 345.
  • 3Jang, S. B. Tetrahedron Lett. 1997, 38, 4421.
  • 4Bergbreiter, D. E.; Osburn, P. L.; Frels, J. D. J. Am. Chem. Soc. 2001, 123, 11105.
  • 5Kohler, K.; Heidenreich, R. G.; Pietsch, J. Chem. Eur. J. 2002, 8, 622.
  • 6Kohler, K., Magner, W., Djakovitch, L. Catal. Today 2001, 66, 105.
  • 7Mehert, C. P.; Weaver, D. W.; Ying, J. Y. J. Am. Chem.Soc. 1998,120,12289.
  • 8Zhou, J. M.; Zhou, R. X.; Mo, L. Y.; Zhao, S. E; Zheng, X. M. Chin. J. Chem. 2001, 19, 987.
  • 9Zhou, J. M.; Zhou, R. X.; Mo, L. Y.; Zhao, S. F.; Zheng, X. M. J. Mol. Catal. A: Chem. 2002, 178, 289.
  • 10Luo, F. T.; Xue, C.; Ko, S. L. Tetrahedron Lett. 2005, 61, 6040.

共引文献9

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部