期刊文献+

密度泛函理论方法研究锂离子电池电解液体系分子-离子结构 被引量:3

Density Functional Theory Study on the Structures of Solvent-Ion in the Electrolyte of Lithium Ion Battery
下载PDF
导出
摘要 采用密度泛函理论方法,研究锂离子电池碳酸丙烯酯(PC)基电解液体系中锂盐离子与溶剂分子静电相互作用形成的可能结构.计算结果表明,电解液中溶剂分子-离子的结构取决于体系的溶剂分子数.在PC基电解液,Li+最多只能与4个PC溶剂分子相结合,锂盐阴离子与带正电的PC分子烷基基团相结合,而不以自由离子形式存在.本文的计算结果能很好地解释文献报道的实验结果. In this work, the possible structures of solvent-ion complex, resulting from the electrostatic interaction in the propylene carbonate (PC) base electrolyte of lithium ion battery, have been investigated using the density functional theory. The calculated results show that the structure of solvent-ion complex depends on the solvent number. In the PC base electrolyte, maximum number of PC solvents that coexist in the Li^+-solvent sheath is four. Additionally, the salt anion exists in a complex with the positively charged alkyl group of PC rather than in a free state. The calculated results give a good explanation to the reported experimental observations.
出处 《电化学》 CAS CSCD 北大核心 2014年第6期547-552,共6页 Journal of Electrochemistry
基金 国家自然科学基金-广东省人民政府自然科学联合基金重点项目(No.U1134002) 广东省自然科学基金团队项目(No.10351063101000001) 国家自然科学基金-青年基金项目(No.21303061) 高等学校博士学科点专项科研基金(No.20134407120009)资助
关键词 锂离子电池 电解液 溶剂分子-离子结构 密度泛函方法 lithium ion battery electrolyte interaction structure of solvent-ion density functional theory
  • 相关文献

参考文献18

  • 1李伟善.储能锂离子电池关键材料研究进展[J].新能源进展,2013,1(1):95-105. 被引量:22
  • 2邢丽丹,许梦清,李伟善.高压锂离子电池电解液的研究进展[J].中国科学:化学,2014,44(8):1289-1297. 被引量:7
  • 3Xu K, Lam Y F, Sheng S, et al. Solvation sheath of Li" in nonaqueous electrolytes and its implication of graphite/ electrolyte interface chemistry[J]. Journal of Physical Chemistry C, 2007,111(20): 7411-7421.
  • 4Xing L D, Vatamanu J, Bedrov D, et al. Electrode/electrolyte interface in sulfolane-based electrolytes for Li ion batteries: A molecular dynamics simulation study[J]. Journal of Physical Chemistry C, 2012, 116(45): 23871-23881.
  • 5Xing L D, Borodin 0, Grant S, et al. A density function theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate[J]. Journal of PhysicalChemistry A, 2011, 115(47): 13896-13905.
  • 6Wang Y T, Xing L D, Li W S, et al. Why do sulfone-based electrolytes show stability at high Voltages? Insight from density functional theory[J]. Journal of Physical Chemistry Letter, 2013, 4(22): 3992-3999.
  • 7Li S, Cao Z, Peng Y, et al. Molecular dynamics simulation of LiTFSI-acetamide electrolytes: Structural properties [J]. Journal of Physical Chemistry B, 2008, 112(20): 6398-6410.
  • 8Tsunekawa H, Narumi A, Sano M, et al. Solvation and ion association studies of LiBF4-propylenecarbonate and LiBF4-propylene carbonate-trimethyl phosphate solutions [J]. Journal of Physical Chemistry B, 2003, 107 (39): 10962-10966.
  • 9Wang Y X, Balbuena P B. Theoretical insights into the reductive decompositions of propylene carbonate and vinylene carbonate: Density functional theory studies[J]. Journal of Physical Chemistry B, 2002, 106(17): 4486-4495.
  • 10Fukushima T, Matsuda Y, Hashimoto H, et al. Studies on solvation of lithium ions in organic electrolyte solutions by electrospray ionization-mass spectroscopy [J]. Electro chemical and Solid-State Letter, 2001, 4(8): AI27-AI28.

二级参考文献12

共引文献26

同被引文献39

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部