期刊文献+

基于负载均衡的空间线分组算法

The Algorithm of Spatial Line Grouping Based on Load Balancing
下载PDF
导出
摘要 针对传统并行操作计算效率低的问题,提出以分组并行处理模式优化节点间的负载均衡。以表层浮标轨迹验证涡旋实验为例,给出面向不可分割空间线对象的快速分组方法,设计了两个分组调整算法。实验结果显示,算法可以使每个计算节点达到负载均衡。与串行计算的比较实验结果显示,算法具有较好的加速效果,且加速比随着计算节点个数的增加呈上升趋势。因此,基于负载均衡的空间线分组算法是对不可分割空间线的计算进行优化的有效途径。 To solve tbe problem of low computation efficiency in traditional parallel task operation, this paper pro- posed a grouping parallel processing mode for optimizing load balancing among computation nodes. The quick grou- ping algorithm for grouping the indivisible spatial line objects was applied to the vortex validation experiment, which is implemented by tracking surface buoy. Moreover, two group adaptation algorithms were given. The algorithm proposed in this paper balanced the load of each computation node and achieved perfect speedup. The speedup ratio increased with the numbers of computation nodes. The experimental results show that this spatial line grouping al- gorithm is an effective approach for optimizing the computation of indivisible spatial linear objects.
出处 《山东科技大学学报(自然科学版)》 CAS 2014年第6期97-102,共6页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家海洋公益性行业科研专项(201105033 201105017)
关键词 负载均衡 线对象 并行处理 分组 浮标轨迹 load balancing the line object parallel processing grouping buoy trajectory
  • 相关文献

参考文献14

  • 1Jonk A,Smeulders A W.An axiomatic approach to clustering line-segments[C]//The 3rd International Conference on Document Analysis and Recognition.Montreal,Quebec,Aug.14-16,1995:386-389.
  • 2Jang J H,Hong K S.Fast line segment grouping method for finding globally more favorable line segments[J].Pattern Recognition,2002,35 (10):2235-2247.
  • 3Kelly A R,Hancock E R.Grouping-line segments using eigenclustering[C]//The 11th British Machine Vision Conference.Bristol,Sep.11-14,2000:58659-5.
  • 4Thomas J C R.A new clustering algorithm based on k-means using a line segment as prototype[C]//Progress in Pattern Recognition,Image Analysis,Computer Vision,and Applications.Berlin Heidelberg:Springer,2011:638-645.
  • 5柳盛,吉根林,李文俊.一种基于连接度的空间线对象聚类算法[J].计算机科学,2011,38(8):179-181. 被引量:2
  • 6Abugov D.Oracle spatial partitioning:Best practices:An Oracle white paper[M].Redwood:Oracle CorporationWorld,2004:1-16.
  • 7周芹,钟耳顺,黄耀欢.基于分区技术的静态R树索引并行计算技术[J].计算机工程,2009,35(2):68-69. 被引量:4
  • 8Guttman A.R-trees:A dynamic index structure for spatial searching[C]//The International Conference on Management of Data.New York:ACM Press,1984:47-57.
  • 9HamiltonP.Eddy statistics from Lagrangian drifters and hydrography for the northern Gulf of Mexico slope[J].Journal of Geophysical Research:Oceans (1978-2012),2007,112:C09002.
  • 10Beron-Vera F,Olascoaga M,Goni G.Oceanic mesoscale eddies as revealed by Lagrangian coherent structures[J].Geophysical Research Letters,2008,35(12):L12603.

二级参考文献19

  • 1张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 2Kamel I, Faloutsos C. On Packing R-trees[C]//Proceedings of the 2rid International Conference on Information and Knowledge Management. Washington, D. C., USA: [s. n.], 1993.
  • 3张立立.海量地理空间数据的高性能计算[z].中国科学院地理资源与环境研究所,2005.
  • 4Theodoridis Y, Sellis T. A Model for the Prediction of R-tree Performance[C]//Proceedings of the 15th ACM Symposium on Principles of Database Systems. Montreal, Canada: ACM Press, 1996: 161-171.
  • 5Wan L,Li Y,Liu W,et al.Application and study of Spatial Clus-ter and Customer Partitioning. Proc.of the Fourth Interna-tional Conference on Machine Learning and Cybernetics . 2005
  • 6Tanser F,,Barnighausen T,Cooke G S,et al.Localized spatialclustering of HI V infections in a widely disseminated ruralSouth African epidemic. Int.Journal of Epidemiology . 2009
  • 7Ji G,,Miao J,Bao P.A Spatial Clustering Algorithm Based onSpatial Topological Relations for GML Data. Proc.of Intl.Conf.on Artificial Intelligence and Computational Intelligence . 2009
  • 8Yang N,Ji G.A Spatial Lines Clustering Algorithm Based onAdjacent Relations for GML Data. Proc.of Int.Conf.onIn-formation Engineering and Computer Science . 2009
  • 9Ester M,Kriegel H P,Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases. Proceedings of the 1996 International Conference on Knowledge Discovery and Data Mining (KDD’96) . 1996
  • 10Ji G,Zhang L A.Spatial polygon objects clustering algorithm based on topological relations for GML data. Proceedingsof Intl Conference on Information Engineering and Computer Science . 2009

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部