期刊文献+

电解液浓度对Ti6Al4V钛合金微弧氧化陶瓷膜亲水性能的影响(英文) 被引量:6

Effect of Electrolytic Solution Concentrations on Surface Hydrophilicity of Micro-Arc Oxidation Ceramic Film Based on Ti6Al4V Titanium Alloy
原文传递
导出
摘要 在不同电解液浓度的钙盐和磷酸盐混合体系中对Ti6Al4V合金进行微弧氧化(MAO)以改善其微观结构和亲水性能。利用扫描电镜、X射线衍射仪、测厚仪以及电化学工作站等对生成膜层的显微结构、物相组成、厚度以及亲水性能进行研究。结果表明:所制备的微弧氧化膜表面为粗糙多孔结构,含锐钛矿、金红石以及少量羟基磷灰石。随磷酸二氢钾浓度升高,羟基磷灰石相增多;微弧氧化膜厚度增大到一定值后不再发生变化;微弧氧化致密层与疏松层比例发生变化,增厚的疏松层表面多孔,且有较多含Ca、P的羟基磷灰石相,陶瓷膜的亲水性能提高,使得微弧氧化陶瓷膜的生物相容性得到提高。 The present work focuses on the surface of Ti6AI4V titanium alloy to improve its microstructure and hydrophilic property using micro-arc oxidation (MAO) in a mixed electrolyte system with different concentrations of calcium salt and phosphate salt. The morphology, the crystalline structure, the thickness and the hydrophilic property of the MAO film were detected by scanning elec- tron microscopy(SEM), X-ray diffraction(XRD), eddy current thickness meter and electrochemical work station. Results show that the MAO film surface is porous and composed of anatase, rutile and a small amount of hydroxyapatite. The amount of hydroxyapa- tire phase increases with increasing of potassium dihydrogen phosphate concentration. The thickness of MAO film will not change until it increases to a certain value. The ratio of the surface loose zone to the inner compact zone changes with increasing of the po- tassium dihydrogen phosphate concentration. The thicker loose layer surface is porous and has the hydroxyapatite phase with more Ca and P, which can improve the hydrophilic property and biological compatibility of MAO ceramic film.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第12期2883-2888,共6页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(51362017) Major Science and Technology Programs Supported by Yunnan Province(2012 ZE008)
关键词 TI6AL4V钛合金 微弧氧化 电解液浓度 亲水性 Ti6Al4V titanium alloy micro-arc oxidation electrolyte concentration hydrophilicity
  • 相关文献

参考文献15

  • 1Sun Zhihua, Liu Ming, Guo Dapeng et al. Rare Metal Materials andEngineering[J], 2010, 39 (SI): 64 (in Chinese).
  • 2Ma Chufan, Li Dongmei, Li Hejun et al Acta Chim Sinica[J], 2005 (3): 323 (in Chinese).
  • 3Shi Xingling, Xuan Jiashen, Wei Li et al. Metal Heat Treatment [J], 2008,33(7): 37 (in Chinese).
  • 4Yu Sen, Yu Zhentao, Luo Lijuan. Rare Metal Materials and Engineering[J], 2008, 37(S4): 546 (in Chinese).
  • 5Zhang Yixin, Han Yong, Huang Pin et al Acta Chim Sinica[J],2004,32 (2): 122 (in Chinese).
  • 6Liang J, Guo B G, Tian J et al. Surf Coat Technol [J], 2005, 199: 121.
  • 7Hans E. Journal of Biomaterial [J], 1998, 19 (4-5): 397.
  • 8Wang Rumeng, Chu Chenglin, Li Yanfang et al Rare Metal Materials andEngineering[J], 2008,37(11): 2027 (in Chinese).
  • 9Wing Kiu Yeung, Gwendolen C Reilly, Allan Matthews et al. Journal of Biomedical Materials Research B: Applied Biomate-rials[il 2013, 6(101B):939.
  • 10Meng Xiaojuan, Li Weijing, Cui Shihai et al. Journal of Aviation Materials [J], 2009, 29(2): 39 (in Chinese).

同被引文献154

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部