摘要
This paper presents a new robust sliding mode control (SMC) method with well-developed theoretical proof for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noise (Wiener process). The key features of the proposed method are to apply singular value decomposition (SVD) to all structural uncertainties and to introduce adjustable parameters for control design along with the SMC method. It leads to a less-conservative condition for robust stability and a new robust controller for the general uncertain stochastic systems via linear matrix inequality (LMI) forms. The system states are able to reach the SMC switching surface as guaranteed in probability 1. Furthermore, it is theoretically proved that the proposed method with the SVD and adjustable parameters is less conservatism than the method without the SVD. The paper is mainly to provide all strict theoretical proofs for the method and results.
This paper presents a new robust sliding mode control (SMC) method with well-developed theoretical proof for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noise (Wiener process). The key features of the proposed method are to apply singular value decomposition (SVD) to all structural uncertainties and to introduce adjustable parameters for control design along with the SMC method. It leads to a less-conservative condition for robust stability and a new robust controller for the general uncertain stochastic systems via linear matrix inequality (LMI) forms. The system states are able to reach the SMC switching surface as guaranteed in probability 1. Furthermore, it is theoretically proved that the proposed method with the SVD and adjustable parameters is less conservatism than the method without the SVD. The paper is mainly to provide all strict theoretical proofs for the method and results.
基金
partially supported by the National Science Foundation Grants(Nos.0940662,1115564)of Prof.S.-G.Wang