期刊文献+

含氮-空位缺陷锯齿状石墨烯纳米条带中负微分电阻和自旋过滤效应

Negative Differential Resistance and Spin-Filtering Effects in Zigzag Graphene Nanoribbons with Nitrogen-Vacancy Defects
下载PDF
导出
摘要 采用第一性原理和非平衡格林函数方法,系统研究了含氮空位缺陷锯齿状石墨烯纳米条带的自旋极化输运特性.理论计算结果表明边界非对称的这类石墨纳米条带的基态具有铁磁性,由其构建的分子结中负微分电阻效应具有鲁棒性,是电极局域的态密度及依赖偏压的散射区-电极耦合作用结果.此外,在特定偏压区域还观察到几乎完美的自旋过滤效应. We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combined with non-equilibrium Green's function technique. We observe robust negative di erential resistance (NDR) effect in all examined molecular junctions. Through analyzing the calculated electronic structures and the bias-dependent transmission coefficients, we find that the narrow density of states of electrodes and the bias-dependent effective coupling between the central molecular orbitals and the electrode subbands are responsible for the observed NDR phenomenon. In addition, the obvious di erence of the transmission spectra of two spin channels is observed in some bias ranges, which leads to the near perfect spin-filtering effect. These theoretical findings imply that GNRs with nitrogenvacancy defects hold great potential for building molecular devices.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第6期653-658,I0003,共7页 化学物理学报(英文)
基金 This work was partially supported by the National Natural Science Foundation of China (No.20903003 and No.21273208), the Anhui Provincial Natural Science Foundation (No.1408085QB26), the China Postdoctoral Science Foundation (No.2012M511409), the Supercomputer Center of Chinese Academy of Sciences, and University of Science and Technology of China and Shanghai Supercomputer Centers.
关键词 缺陷型石墨烯纳米条带 电子结构 自旋极化输运特性 负微分电阻效应 自旋过滤 Defective graphene nanoribbon, Electronic structure, Spin-polarized transport property, Negative differential resistance, Spin-filtering
分类号 O [理学]
  • 相关文献

参考文献38

  • 1N. J. Tao, Nat. Nanotechnol. 1, 173 (2006).
  • 2N. A. Zilnbovskaya and M. R. Pederson, Phys. Rep. 509, 1 (2011).
  • 3L. P. Zhou, S. W. Yang, M. F. Ng, M. B. Sullivan, V. B. C. Tan, and L. Shen, J. Am. Chem. Soc. 130, 4023 (2008).
  • 4K. Xu, J. Huang, S. L. Lei, H. B. Su, E. Y. C. Boey, Q. X. Li, and J. L. Yang, J. Chem. Phys. 131, 104704 (2009).
  • 5J. Huang, W. Y. Wang, S. F. Yang, Q. X. Li, and J. L. Yang, Chem. Phys. Lett. 590,111 (2013).
  • 6J. Huang, K. Xu, S. L. Lei, H. B. Su, S. F. Yang, Q. X. Li, and J. L. Yang, J. Chem. Phys. 136, 064707 (2012).
  • 7J. Huang, W. Y. Wang, S. F. Yang, Q. X. Li, and J. L. Yang, Nanotechnology 23, 255202 (2012).
  • 8H. Hao, X. H. Zheng, L. L. Song, R. N. Wang, and Z. Zeng, Phys. Rev. Lett. 108, 017202 (2012).
  • 9R. M. Metzger, Chem. Rev. 103, 3803 (2003).
  • 10A. J. Kroneineijer, H. B. Akkerman, T. Kudernae, B. J. van Wees, B. L. Feringa, P. W. M. Bloin, and B. de Boer, Adv. Mater. 20, 1467 (2008).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部