期刊文献+

基于划分的高效异常轨迹检测 被引量:5

Trajectory outlier detection based on space partition
下载PDF
导出
摘要 为了在海量轨迹数据库中高效准确地挖掘出异常轨迹,提出了基于划分的异常轨迹检测算法。该算法通过计算局部轨迹点之间的匹配程度来探测异常轨迹,将异常轨迹检测由形状匹配问题转化为传统的异常点检测问题,并设计了一种基于空间划分的网格索引结构,提高算法的运行效率。实验证明,该算法不仅具有较高的挖掘效率,而且能够检测出更具实际意义的异常轨迹。 As the development of mobile computing technology and GPS-enabled mobile devices, the services of moving object receive more and more attention. And trajectory outlier detection is a widely appealing application. In this paper, a novel detection algorithm is proposed to mine trajectory outliers from massive trajectory datasets more efficiently. The algorithm is based on space partition and finds trajectory outliers through mining the local trajectory point outlier. In this way,it converts the problem of finding trajectory to traditional outlier detection problem. In addition, a novel index structure is designed to improve the computing efficiency. Experiments show its higher efficiency and its power to find more meaningful trajectory outlier.
出处 《计算机工程与应用》 CSCD 2014年第24期127-132,172,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.60728204/F020404) 科技重大专项经费资助(No.2013ZX04006011-102-002)
关键词 异常轨迹 轨迹点 空间划分 网格索引树 trajectory outlier trajectory point space partition grid index tree
  • 相关文献

参考文献15

  • 1Guting G H,Schneider M.Moving objects databases[M].[S.l.]:Morgan Kaufmann,2005:217-224.
  • 2Bu Y,Chen L.Efficient anomaly monitoring over moving object trajectory streams[C]//SIGKDD,Rhode Island,USA,2009:159-168.
  • 3Li X,Li Z,Han J,et al.Temporal outlier detection in vehicle traffic data[C]//Proceedings of ICDE,2009:1319-1322.
  • 4Ge Y,Xiong H,Zhou Z H,et al.Top-eye:top-k evolving trajectory outlier detection[C]//Proceedings of CIKM,2010:1733-1736.
  • 5Knorr E M,Ng R T.Algorithms for mining distance-based outliers in large datasets[C]//Proceedings of 24th VLDB,New York City,1998:392-403.
  • 6Knorr E M,Ng R T.Finding intensions knowledge of distance-based outliers[C]//Proceedings of 25th VLDB,Edinburgh,Scotland,1999:211-222.
  • 7Knorr E M,Ng R T,Tucakov V.Distance-based outlier:algorithms and applications[J].VLDB Journal,2000,8(3):237-253.
  • 8Li X,Han J,Kim S,et al.ROAM:rule and motif-based anomaly detection in massive moving object data sets[C]//Proceedings of 7th SIAM International Conference on Data Mining,Minneapolis,Minnesota,2007:296-307.
  • 9Lee J G,Han J,Li X.Trajectory outlier detection:a partition-and-detect framework[C]//Proceedings of ICDE,2008.
  • 10Lee J G,Han J,Whang K Y.Trajectory clustering:a partition-and-group framework[C]//Proceedings of ACM SIGMOD,Beijing,China,2007:593-604.

同被引文献38

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部