期刊文献+

基于简化SIFT的口服液杂质检测防抖方法

Anti-shaking method for impurity detection in oral liquid using simplified SIFT
下载PDF
导出
摘要 在口服液灯检机杂质检测系统中,口服液瓶体由于履带搓瓶的急停会有轻微的抖动,造成高速工业摄像机拍摄的前后两帧口服液瓶体图像中位于相同空间位置的像素无法重合在一起,导致前后两帧图像做差分结果出现错误。由于口服液中的杂质很小,一般会达到微米级别,因此机械的扰动以及口服液瓶体上的污点都有可能因位置偏差对检测结果造成影响。采用尺度不变特征检测(SIFT)对系统采集的前后两帧图像进行位置配准。SIFT算法稳定性精度很高,适用于高精度口服液杂质检测系统。基于抖动幅度微弱,对该算法进行了一定的改进与简化,以获得最佳配准结果。在实际检测过程中算法稳定,检测结果准确率很高。 In the light inspection machine system for oral liquid impurity detection, due to slight vibration of oral liquid bottle caused by sudden halt of crawler belt used for bottle spinning, in the sequential two pictures of oral liquid bottle captured from high-speed industry camera, pixels sharing the same partial positions cannot be overlapped, which may lead to incorrect result after differential operation of the two pictures. For impurity in oral liquid is very small about micrometer level, mechanical dithering or dirt on the bottle of oral liquid shall pose influence on inspection accuracy because of aforementioned reason. This paper will harness SIFT algorithm to register the sequential two pictures. SIFT algorithm is suitable for high accuracy oral liquid impurity detection system on account of its stability. It improves SITF a little in the aim of adapting to slight vibration range which will generate satisfactory result. In the real process of detection, the algorithm is of high stability and high accuracy.
出处 《计算机工程与应用》 CSCD 2014年第24期255-258,270,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60835004)
关键词 口服液灯检机 高精度杂质检测 尺度不变特征检测(SIFT) 位置配准 light inspection machine for oral liquid high-accuracy impurity detection Scale Invariant Feature Transform (SIFT) position registration
  • 相关文献

参考文献13

  • 1葛继,王耀南,张辉,周博文.基于改进型PCNN的智能灯检机研究[J].仪器仪表学报,2009,30(9):1866-1873. 被引量:21
  • 2Carmona E J,Martinez-Cantos J,Mira J.A new video segmentation method of moving objects based on blob-level knowledge[J].Pattern Recognition Letters,2008,29(3):272-285.
  • 3张耀,王耀南,周博文.异型瓶药液中可见异物的智能视觉检测机器人[J].仪器仪表学报,2010,31(5):1058-1063. 被引量:16
  • 4Brown L G.A survey of image registration techniques[J].ACM Computing Surveys,1992,24(4):325-376.
  • 5Harris C G,Stephens M J.A combined corner and edge detector[C]//Proceedings of the 4th Alvey Vision Conference.Manchester,England:IEEE Computer Society,1988:147-151.
  • 6Johnson J L.Pulse-coupled neural nets:translation,rotation,scale,distortion,and intensity signal invariance for images[J].Applied Optics,1994,26(23):4972-4978.
  • 7Johnson J L,Padgett M L.PCNN models and applications[J].IEEE Transactions on Neural Networks,1999,10(3):480-498.
  • 8Bay H,Ess A,Tuytelaars T.Speeded-Up Robust Features(SURF)[J].Computer Vision and Image Understanding,2008,110(3):346-359.
  • 9Lowe D.Distinctive image features from scale-invariant key points[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 10Lampropoulos G A,Boulter J F.Filtering of moving targets using SBIR sequential frames[J].IEEE Transactions on Aerospace and Electronic Systems,1995,31(4):1255-1267.

二级参考文献24

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部