期刊文献+

基于混杂理论的机器人辅助康复治疗控制方法 被引量:4

Therapeutic Control Method for Robotic-aided Rehabilitation Training Based on Hybrid Theory
原文传递
导出
摘要 现有机器人辅助康复治疗控制方法大多是分别从机器人连续变量运动控制或医师离散事件决策控制角度设计控制器,未能将系统这种混杂特性融于统一框架内,具有一定的局限.为更好解决上述问题,本文在分析机器人辅助康复过程的连续与离散混杂特性的基础上,以渐进抗阻肌力训练过程为例,提出一种基于混杂理论的机器人辅助康复治疗控制方法.该方法通过定义肌力训练过程中离散系统控制状态、控制输出向量及连续系统状态转换产生的离散事件,设计了基于混杂自动机的离散事件决策控制器.临床实验结果表明,混杂系统理论应用于机器人辅助康复过程具有较好的有效性和实用性. The current robot-aided therapeutic control methods are mainly designed from the viewpoints of robotic con-tinuous variable motor control or therapist’s discrete event decision control, and the system’s hybrid characteristics are not incorporated into a unified framework. In order to solve the aforementioned limits, the continuous and discrete hybrid char-acteristics of robot-aided rehabilitation are firstly analyzed, and a new robot-aided therapeutic control method using hybrid control theory is proposed with progressive resistance muscle training as an example. The presented method defines discrete system control states, control output vector and continuous system state transitions discrete symbols for muscle strength training, by which a discrete event decision controller is constructed using hybrid automaton. Clinical experimental results indicate that the robot-aided rehabilitation using the proposed hybrid therapeutic controller has good efficacy and practicality.
出处 《机器人》 EI CSCD 北大核心 2014年第6期641-646,共6页 Robot
基金 国家自然科学基金资助项目(61305095 61104206 61104216) 江苏省自然科学基金资助项目(BK20141426 BK2012832) 江苏省高校自然科学基金资助项目(12KJB510015)
关键词 康复机器人 混杂控制 人机交互 肌力训练 rehabilitation robot hybrid control human-robot interaction muscle strength training
  • 相关文献

参考文献11

  • 1Ju M S, Lin C C K, Lin D H, et al. A rehabilitation robot withforce-position hybrid fuzzy controller: Hybrid fuzzy control ofrehabilitation robot[J]. IEEE Transactions on Neural Systemsand Rehabilitation Engineering, 2005, 13(3): 349-358.
  • 2Wolbrecht E T, Chan V, Reinkensmeyer D J, et al. Optimizingcompliant, model-based robotic assistance to promote neuro-rehabilitation[J]. IEEE Transactions on Neural Systems and Re-habilitation Engineering, 2008, 16(3): 286-297.
  • 3Adamovich S V, Fluet G G, Merians A S, et al. Incorporat-ing haptic effects into three-dimensional virtual environmentsto train the hemiparetic upper extremity [J]. IEEE Transactionson Neural Systems and Rehabilitation Engineering, 2009, 17(5):512-520.
  • 4Lenzi T, de Rossi S M M,Vitiello N, et al. Intention-basedEMG control for powered exoskeletons [J]. IEEE Transactionson Biomedical Engineering, 2012, 59(8): 2180-2190.
  • 5Choi Y G, Gordon J, Park H, et al. Feasibility of the adaptiveand automatic presentation of tasks (ADAPT) system for reha-bilitation of upper extremity function post-stroke[J]. Journal ofNeuroEngineering and Rehabilitation, 2011, 8: No.42.
  • 6Varol H A, Sup F, Goldfarb M. Multiclass real-time intentrecognition of a powered lower limb prosthesis[J]. IEEE Trans-actions on Biomedical Engineering, 2010, 57(3): 542-551.
  • 7Lennartson B, Tittus M, Egardt B, et al. Hybrid systems in pro-cess control[J]. IEEE Control Systems Magazine, 1996, 16(5):45-56.
  • 8Fregene K, Kennedy D C, Wang D W L. Toward a systems-and control-oriented agent framework[J]. IEEE Transactions onSystems, Man, and Cybernetics, Part B: Cybernetics, 2005,35(5): 999-1012.
  • 9Xu G Z, Song A G, Li H J. Control system design for an upper-limb rehabilitation robot[J]. Advanced Robotics, 2011, 25(1/2):229-251.
  • 10徐国政,宋爱国,潘礼正,高翔,梁志伟,徐宝国.基于分层触发控制的机器人辅助肌力训练临床实验研究[J].机器人,2013,35(3):269-275. 被引量:1

二级参考文献12

  • 1纪树荣.运动疗法技术学[M].北京:华夏出版社.2005:74,87-89.
  • 2Ju M S, Lin C C K, Lin D H, et al. A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control ofrehabilitation robot[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(3): 349-358.
  • 3Lum P S, Burgar C G, van der Loos M, et al. MIME robotic de- vice for upper-limb neurorehabilitation in subacute stroke sub- jects: A follow-up study[J]. Journal of Rehabilitation Research and Development, 2006, 43(5): 631-642.
  • 4Coote S, Murphy B, Harwin W, et al. The effect of the GEN- TLE/s robot-mediated therapy system on arm function after stroke[J]. Clinical Rehabilitation, 2008, 22(5): 395-405.
  • 5Wu M, Landry J M, Schmit B D, et al. Robotic resistance tread- mill training improves locomotor function in human spinal cord injury: A pilot study[J]. Archives of Physical Medicine and Re- habilitation, 2012, 93(5): 782-789.
  • 6Denve A, Moughamir S, Afilal L, et al. Control system de- sign of a 3-DOF upper limbs rehabilitation robot[J]. Computer Methods and Programs in Biomedicine, 2008, 89(2): 202-214.
  • 7Taylor N F, Dodd K J, Damiano D L. Progressive resistance ex- ercise in physical therapy: A summary of systematic reviews[J]. Physical Therapy, 2005, 85(11): 1208-1223.
  • 8Sharp I, Huang F, Patton J. Visual error augmentation enhances learning in three dimensions[J]. Journal of NeuroEngineering and Rehabilitation, 2011, 8: DOI 10.1186/1743-0003-8-52.
  • 9Veneman J F, Kruidhof R, Hekman E E G, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation[J]. IEEE Transactions on Neural Systems and Re-habilitation Engineering, 2007, 15(3): 379-386.
  • 10Xu G Z, Song A G, Li H J. Control system design for an upper- limb rehabilitation robot[J]. Advanced Robotics, 2011, 25(1/2): 229-251.

同被引文献57

  • 1张立勋,赵凌燕,王岚,王建.一种测量人行走时骨盆运动轨迹的新方法[J].哈尔滨工程大学学报,2006,27(1):128-130. 被引量:16
  • 2张立勋,王克义,张今瑜,王岚.基于绳索牵引的骨盆运动并联康复机器人的可控性研究[J].哈尔滨工程大学学报,2007,28(7):790-794. 被引量:15
  • 3CAO Jinghui,XIE Sheng Quan,DAS Raj,et al.Control strategies for effective robot assisted gait rehabilitation:The state of art and future prospects[J].Medical Engineering&Physics,2014,36(12):1555-1566.
  • 4ZI Bin,LIN Jun,QIAN Sen.Localization,obstacle avoidance planning and control of a cooperative cable parallel robots for multiple mobile cranes[J].Robotics and Computer-Integrated Manufacturing,2015,34:105-123.
  • 5SAROSI J,BIRO I,NEMETH J,et al.Dynamic modeling of a pneumatic muscle actuator with two-direction motion[J].Mechanism and Machine Theory,2015,85:25-34.
  • 6COLOMBO G,JOERG M,SCHREIER R,et al.Treadmill training of paraplegic patients using a robotic orthosis[J].Journal ofRehabilitation Research and Development,2000,37(6):693-700.
  • 7JAMWAL P K,XIE S Q,HUSSAIN S,et al.An adaptive wearable parallel robot for the treatment of ankle injuries[J].IEEE/ASME Transactions on Mechatronics,2014,19(1):64-75.
  • 8ZHAO Xinwei,ZI Bin.Design and analysis of a pneumatic muscle driven parallel mechanism for imitating human pelvis[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2014,228(4):723-741.
  • 9LIANG C,CECCARELLI M.Design and simulation of a waist–trunk system for a humanoid robot[J].Mechanism and Machine Theory,2010,524(7):217-224.
  • 10CHOU C P,HANNAFORD B.Measurement and modeling of Mc Kibben pneumatic artificial muscles[J].IEEE Transactions on Robotics and Automation,1996,12(1):90-102.

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部