期刊文献+

基于层次化联结CPG模型的蛇形机器人3维步态控制 被引量:1

An HCCPG Model-based 3D Gait Control of a Snake-like Robot
原文传递
导出
摘要 联结CPG(connectionist central pattern generator,CCPG)模型适于控制机器人生成步态,但是传统的CCPG模型无法很好地生成3维步态.为此,本文根据生物学原理,提出了一个改进的神经元模型和一个改进的层次化CCPG(hierarchical CCPG,HCCPG)模型.HCCPG模型能够生成相位协调的多自由度运动控制信号,从而解决了传统CCPG模型的步态生成问题.基于该模型,提出了一个统一方法来生成机器人的2维、3维步态.对转弯步态的特性进行了系统化深入分析,以便更好地利用该步态来适应狭窄的弯道环境.本文提出的HCCPG模型以及得到的步态特性,有助于提高机器人的环境适应能力. The connectionist central pattern generator (CCPG) model is suitable for controlling robots and generating gaits, however, the traditional CCPGs can’t generate the 3D gaits well. To solve this problem, an improved neuron model and an improved hierarchical CCPG (HCCPG) model are proposed according to biology principles. HCCPG can generate the phase-coordinated multi-degrees-of-freedom motion control signals well, so it solves the gait generation problem in traditional CCPGs. Based on the HCCPG, a unified generation method is proposed for 2D gaits and 3D gaits. The properties of turning gait are investigated systematically and thoroughly to make better use of it to adapt to narrow curved passages. The proposed HCCPG model and the derived gait properties are useful for improving the robot’s adaptability.
出处 《机器人》 EI CSCD 北大核心 2014年第6期697-703,共7页 Robot
基金 国家自然科学基金资助项目(61333016)
关键词 蛇形机器人 层次化联结CPG模型 3维步态 转弯步态 snake-like robot hierarchical connectionist central pattern generator model 3-dimensional gait turning gait
  • 相关文献

参考文献17

  • 1Hooper S L. Central pattern generators [J]. Current Biology,2000,10(5): R176-R177.
  • 2Herrero-Carron F, Rodriguez F, Varona P. Bio-inspired de-sign strategies for central pattern generator control in mod-ular robotics[J]. Bioinspiration & Biomimetics, 2011, 6(1):No.016006.
  • 3Hirose S, Yamada H. Snake-like robots: Machine design of bi-ologically inspired robots [J]. IEEE Robotics and AutomationMagazine, 2009,16(1): 88-98.
  • 4唐超权,王明辉,李斌,马书根.融合机械元的蛇形机器人循环抑制中枢模式发生器控制方法[J].机器人,2013,35(1):123-128. 被引量:4
  • 5Ijspeert A. Central pattern generators for locomotion control in animals and robots: A review[J]. Neural Networks, 2008, 21(4): 642-653.
  • 6Vogelstein R J, Tenore F V G, Guevremont L, et al. A siliconcentral pattern generator controls locomotion in vivo[J]. IEEETransactions on Biomedical Circuits and Systems, 2008, 2(3):212-222.
  • 7Yang Z J, Cameron K, Lewinger W, et al. Neuromorphic controlof stepping pattern generation: A dynamic model with analogcircuit implementation[J]. IEEE Transactions on Neural Net-works and Learning Systems, 2012, 23(3): 373-384.
  • 8Huang W W, Chew C M, Hong G S. A coordination-based CPGstructure for 3D walking control [J]. Robotica, 2013, 31(5): 777-788.
  • 9McCrea D A, Rybak I A. Organization of mammalian locomo-tor rhythm and pattern generation [J]. Brain Research Reviews,2008, 57(1): 134-146.
  • 10Kiehn O, Kjaerulff O, Tresch M C,et al. Contributions of in-trinsic motor neuron properties to the production of rhythmicmotor output in the mammalian spinal cord[J]. Brain ResearchBulletin, 2000, 53(5): 649-659.

二级参考文献13

  • 1卢振利,马书根,李斌,王越超.基于循环抑制CPG模型控制的蛇形机器人蜿蜒运动[J].自动化学报,2006,32(1):133-139. 被引量:11
  • 2Hirose S,Cave P,Goulden C. Biologically inspired robots:Snake-like locomotors and manipulators[M].Oxford,uk:oxford University Press,1993.
  • 3Ijspeert A J. Central pattern generators for locomotion control in animals and robots:A review[J].Neural Networks,2008,(04):642-653.doi:10.1016/j.neunet.2008.03.014.
  • 4Taga G,Yamaguchi Y,Shimizu H. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment[J].Biological Cybernetics,1991,(03):147-159.
  • 5Kimura H,Fukuoka Y,Cohen A H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts[J].International Journal of Robotics Research,2007,(05):475-490.doi:10.1177/0278364907078089.
  • 6Arena P,Fortuna L,Frasca M. An adaptive,self-organizing dynamical system for hierarchical control of bio-inspired locomotion[J].IEEE Transactions on Systems Man and Cybernetics-Part B:Cybernetics,2004,(04):1823-1837.
  • 7Lu Z L,Ma S G,Li B. Serpentine locomotion of a snake-like robot controlled by cyclic inhibitory CPG model[A].Piscataway,NJ,USA:IEEE,2005.96-101.
  • 8Wu X D,Ma S G. Adaptive creeping locomotion of a CPG-controlled snake-like robot to environment change[J].Autonomous Robots,2010,(03):282-294.doi:10.1007/s10514-009-9168-1.
  • 9Sato M,Nakamura Y,Ishii S. Reinforcement learning for biped locomotion[A].Berlin:Springer-Verlag,2002.777-782.
  • 10Crespi A,Ijspeert A J. Online optimization of swimming and crawling in an amphibious snake robot[J].IEEE Transactions on Robotics,2008,(01):75-87.doi:10.1109/TRO.2008.915426.

共引文献8

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部