期刊文献+

一类半环上的开算子

Congruence openings on a class of semirings
下载PDF
导出
摘要 为研究一类半环上的开同余,采用格林关系和同态的方法。给出了加法半群为半格的半环上由格林关系所确定的半环上的开同余的性质,证明了由该开同余出发得到的3个不同的半环类均是簇。对加法半群为半格的半环簇的子簇格进行了研究,得到了两个开算子。所得结果对研究加法半群为半格的半环簇有着重要作用。 To study congruence openings on a class of semirings. The method of Green's relations and homo- morphisms is used. The properties of congruence openings of a semiring are given that is determined by Green' s relations of a semiring with a semilattice addictive reduct and three classes of scmirings which are obtained by means of the congruence openings are all varieties of semirings proved. And an open operator is investigated on the lattice of all subvarieties of the variety of semirings with a semilattic addictive reduct and two opening operators are obtained. The obtained results are very helpful to study varieties of semirings with a semilattice addictive reduct.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期882-885,共4页 Journal of Northwest University(Natural Science Edition)
基金 陕西省自然科学基金资助项目(2011JQ1017)
关键词 半环 格林关系 开同余 半环簇 开算子 semiring Green's relation congruence opening variety of scmirings open operator
  • 相关文献

参考文献10

  • 1HOWIE J M.Fundamentals of Semigroup Theory[M].Oxford:Oxford Science Publication,l995.
  • 2SEN M K,BHUNIYA A K.On additive idempotent kregular semirings[J].Bull Cal Math Swc,2001,93:181-384.
  • 3DAMLJANOVIC N,CIRIC M,BOGDANOVIC S.Congruence openings of additive Green's relations on a semiring[J].Semigroup Forum,2011,82(3):437-454.
  • 4秦松,甘爱萍.加法半群为半格的半环上Green-关系[J].江西师范大学学报(自然科学版),2012,36(2):151-154. 被引量:3
  • 5JEZEK J,KEPKA T,MAROTI M.The endomorphism semiring of a semilattice[J].Semigroup Forum,2009,78:21-26.
  • 6PASTIJIN F,ZHAO X Z.Green's D-relation for the multiplicative reduct of an idempotent semiring[J].Arch Math,2000,36:77-93.
  • 7PASTIJIN F,ZHAO X Z.Varieties of semirings with commutative addition[J].Algebra Universalis,2005,54:301-321.
  • 8KEHAYOPULU N.Ideal and Green's relations in ordered semigroup[J].International Journal of Mathematics and Mathematical Sciences,2006,1:1-8.
  • 9HALL T E.Congruences and Green's relations on regular semigroup[J].Journal of Algebra,1973,24:1-24.
  • 10BURRIS S,SANKPPANAVAR H P.A Course in Universal Algebra[M].New York:Springer Verlag,1981.

二级参考文献14

  • 1包强,梅永刚,邵海琴.半环上的Green's-L关系[J].科学技术与工程,2007,7(7):1416-1418. 被引量:2
  • 2平静水,邓科峰.幂等元半环上的D∨D关系[J].安徽大学学报(自然科学版),2007,31(1):9-11. 被引量:1
  • 3Howie J M. Fundametals of semigroups theory [M]. Oxford: Clarendon Press, 1995.
  • 4Ciric M, Bogdanovic S. Semilattice decompositions of semigroups [J]. Semigroup Forum, 1996, 52(1): 119-132.
  • 5Grillet M P. Green's relations in a semiring [J]. Portugal Math, 1970, 29 (4): 181-195.
  • 6Bhuniya A K, Mondal T K. Distributive lattice decompositions of semirings with a semilattice additive reduct [J]. Semigroup Forum, 2010, 80(2): 293-301.
  • 7Sen M K, Bhuniya A K. On additive idempotent k-regular semirings [J]. Bull Cal Math Soc, 2001, 93(5): 371-384.
  • 8Kehayopulu N. Note on Green's relations in ordered semigroups [J]. Mathematica Japonica, 1991, 36(2): 211-214.
  • 9Kehayopulu N. Ideals and green's relations in ordered semi- groups [J]. International Journal of Mathematics and Mathematical Sciences, 2006(1): 1-8.
  • 10Kchayopulu N, Tsingelis M. On left regular ordered scmigroups[J]. Southeast Asian Bulletin of Mathematics, 2002, 25(4): 609-615.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部