期刊文献+

基于谱特征参数的图像稀疏降噪

Image Denoising via Sparse Representation with Spectral Parameter
下载PDF
导出
摘要 提出一种基于谱特征参数的图像稀疏降噪算法。其采用稀疏重构理论为图像降噪框架,并将图论中的谱特征参数作为一约束条件,以有效克服传统稀疏重构中稀疏解不稳定的问题。该降噪算法将噪声图像块作为基础元素进行关系图构建,进而得到邻接矩阵。然后,求解该邻接矩阵对应的拉普拉斯矩阵,并对其进行特征分解,得到对应的特征向量,即谱特征参数。最后,将图像块矩阵与一定数目该高频谱特征参数所组成矩阵的乘积作为稀疏模型的正则项形成提出的算法模型。实验结果表明,与基于K-SVD的稀疏表示降噪算法相比,在相同参数的情况下提出的算法在多种类型噪声下对多幅图像的降噪效果都有着显著的提高。 An image denoising algorithm via sparse representation with spectral parameter is proposed.The theory of sparse reconstruction is adopted as the frame of image denoising,and spectral parameter is considered as a constraint condition to overcome the problem of sparse solution to be unstable.In the denoising algorithm,noisy image patches are treated as elements to construct relational graph,and,then the adjacent matrix is obtained.After that,the laplacian matrix corresponding to the adjacent matrix is deduced and relevant eigenvectors of the laplacian matrix,namely the spectral parameter,is solved by eigendecomposition.Finally,the product of image patches matrix and the matrix consisting of certain high frequency spectral parameter,as a regular term,is introduced into the sparse modle,which forms this algorithm modle.Experiments demonstrate that the denoising result of the proposed algorithm compared with that of sparse model of K-SVD leads to better performance on several images under four sorts of noise and the same conditon.
出处 《科学技术与工程》 北大核心 2014年第36期77-86,91,共11页 Science Technology and Engineering
基金 江苏省自然科学基金(BK20130238)资助
关键词 图像降噪 稀疏表示 K-SVD 谱特征参数 image denoising sparse representation K-SVD spectral parameter
  • 相关文献

参考文献25

  • 1Tomasi C,Manduchi R.Bilateral filtering for gray and color images.Proc 6th ICCV,1998:836-846.
  • 2Takeda H,Farsiu S,Milanfar P.Kernel regression for image processing and reconstruction.IEEE Trans on Image Processing,2007; 16(2):349-366.
  • 3Buades A,Coll B,Morel J M.A review of image denoising algorithms,with a new one.Multiscale Model Simul,2005; 4 (2):490-530.
  • 4Dabov K,Foi A,Katkovnik V,et al.Image denoising by sparse 3-D transform-domain collaborative filtering.IEEE Trans on Image Processing,2007; 16(8):2080-2095.
  • 5Chatterjee P,Milanfar P.Patch-based near-optimal image denoising.IEEE Trans on Image Processing,2012; 21 (4):1635-1649.
  • 6Aharon M,Elad M,Bruckstein A.K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation.IEEE Trans on Signal Processing,2006; 54(11):4311-4322.
  • 7Elad M,Aharon M.Image denoising via sparse and redundant representations over learned dictionaries.IEEE Trans on Image Processing,2006 ; 15 (12):3736-3745.
  • 8Li Shutao,Yin Haitao,Fang Leyuan.Group-sparse representation with dictionary learning for medical image denoising and fusion.IEEE Trans on Biomedical Eigineering,2012; 59(12):3450-3459.
  • 9Tang Yibin,Shen Yuan,Jiang Aimin,et al.Image denoising via graph regularized K-SVD.IEEE International Symposium on Circuits and Systems,2013:2820-2823.
  • 10Dong Weisheng,Zhang Lei,Shi Guangming,et al.Nonlocally centralized sparse representation for image restoration.IEEE Trans on Image Processing,2013 ; 22(4):1620-1630.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部