期刊文献+

基于稀疏分布的空间节点资源循环迭代控制算法

Circulation Iterative Control Algorithm for Space Node Resources Based on Sparse Distribution
下载PDF
导出
摘要 为解决大规模稀疏型传感网络数据随节点数目急剧增大时导致网络堵塞的问题,提出了基于稀疏分布的空间节点资源循环迭代控制算法。该方法利用大规模稀疏网络节点在空间上的弱相关性,构建了一个表达联合稀疏关系的模型。通过通信特征做到自适应选择最优节点作为感知节点,针对稀松节点数量有限、无法传递海量信息的问题,采用循环迭代控制对稀疏网络节点数据进行压缩,以最大程度用有限节点获得最大信息量;再利用信号稀疏性特征重构节点数据。仿真结果表明,该方法以有限的节点资源满足估计精确度的要求,并有效减少了感知的节点数目,降低系统的资源消耗。 To solve the large-scale sparse data type sensor network with node number increase sharply when lead to network congestion problem,based on the distribution of the sparse space node resources circulation iterative control algorithm was proposed.The method using large-scale sparse network node in space weak correlation,built a express joint sparse relationship model,through the communication characteristics as perception be adaptive to choose the optimal node,in view of the poor node number is limited,unable to deliver huge amounts of information,the loop iteration control on sparse network node data compression,to maximize the use limited node to obtain the largest amount of information,data reuse signal sparse feature reconstruction node.The simulation results show that this method takes the limited node resources to meet the requirements of the estimation accuracy,and reduce the number of nodes in perception,reduce the resource consumption of the system.
作者 徐新爱
出处 《科学技术与工程》 北大核心 2014年第36期204-207,225,共5页 Science Technology and Engineering
关键词 无线传感网络 压缩感知 稀疏分布 循环迭代 wireless sensor network compressed sensing sparse distribution circulation iterative
  • 相关文献

参考文献10

二级参考文献113

  • 1高传善,杨珉,毛迪林.无线传感器网络路由协议研究综述[J].世界科技研究与发展,2005,27(4):1-8. 被引量:20
  • 2任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法[J].软件学报,2006,17(3):422-433. 被引量:156
  • 3赵洪钢,史浩山.一种无线传感器网络信道接入自适应慢速退避算法[J].传感技术学报,2006,19(2):515-519. 被引量:8
  • 4Federal Communications Commission. Spectrum policy task force report, ET Docket No. 02-135 [R]. Washington, DC: FCC, 2002.
  • 5Mitola J, Maguire G Q. Cognitive radio.. Making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13-18.
  • 6Visotsky E, Kuffner S, Peterson R. On collaborative detection of TV transmissions in support of dynamic spectrum sharing[C]// Proceedings of 2005 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. New York: IEEE, 2005: 338-345.
  • 7Ganesan G, Li Y. Cooperative spectrum sensing in cognitive radio networks[C]//Proceedings of 2005 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. New York: IEEE, 2005 : 137-143.
  • 8Chair Z, Varshney P K. Optimal data fusion in multiple sensor detection system [J]. IEEE Transactions on Aerospace and Electronic Systems,1986, 22(1):98-101.
  • 9Chen Yunfei. Optimum Number of Secondary Users in Collaborative Spectrum Sensing Considering Resources Usage Effieiency[J].IEEE Communication. Letters, 2008, 12(12): 877-879.
  • 10Zhang Wei, Mallik R K, Ben Letaief K. Cooperative spectrum sensing optimization in cognitive radio networks[C]//Proceedings of 2008 IEEE International Conference On Communications. New York: IEEE, 2008:3 411-3 415.

共引文献215

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部