期刊文献+

高渗胁迫对光滑球拟酵母蛋白质组的影响 被引量:1

The proteome of the Torulopsis glabrata under hyperosmotic stress
下载PDF
导出
摘要 光滑球拟酵母(Torulopsis glabrata)在生产丙酮酸的过程中,发酵液渗透压不断提高,导致细胞生长缓慢,影响丙酮酸的持续积累。实验通过二维电泳和同位素标记相对和绝对定量(iTRAQ)技术,比较不同渗透压条件下蛋白质组的差异。结果表明,在渗透压为1 765、2 603和3 324 mOsmol/kg时,相对于对照条件(860mOsmol/kg),分别有125、91和109个蛋白表达水平上调,94、89和78个蛋白表达水平下调,其中中心代谢和能量代谢途径的蛋白质表达量明显提高。此外,研究还发现,渗透压胁迫可诱导超氧化物歧化酶和富脯蛋白的表达量增加,前者可能和高渗环境下活性氧簇的积累有关,而后者可能与胞内脯氨酸的积累有关。该文为后续研究如何提高T.glabrata抵御高渗胁迫的能力提供理论依据。 During the pyruvate production by Torulopsis glabrata, the osmotic stress in culture broth gradually in- creased. As a result, cell growth and acid production slowed. The proteome of the T. glabrata under hyperosmotic stress was investigated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and isobaric tag for relative and absolute quantitation (iTRAQ). Compared to normal condition (860 mOsmol/kg), 125, 91, 109 proteins were upregulated and 94, 89, 78 proteins were downregulated under osmolarity of 1765 mOsmol/kg, 2603 mOsmol/kg, and 3324 mOsmol/kg. The protein expression involved in central metabolic pathways and energy metabolism showed apparently upregulation. Furthermore, the expression levels of superoxide dismutase and verprolin increased under hy- perosmotic conditions, of which the former might due to the accumulation of reactive oxygen species ( ROS), and the latter might be related to the accumulation of proline. The results presented here will facilitate the improvement of T. glabrata under hyperosmotic stress.
作者 徐沙 刘立明
出处 《食品与发酵工业》 CAS CSCD 北大核心 2014年第7期6-10,共5页 Food and Fermentation Industries
基金 教育部科学技术研究重大项目(313027) 江南大学自主科研计划基金项目(JUSRP211A25)
关键词 蛋白质组 同位素标记相对和绝对定量技术 光滑球拟酵母 proteome, iTRAQ, Torulopsis glabrata
  • 相关文献

参考文献10

  • 1LIU LM,Xu QL,LI Y,et al.Enhancement of pyruvate production byosmotic-tolerant mutant of Torulopsis glabrata[J].Biotechnology and Bioengineering,2007,97(4):825-832.
  • 2Lackner DH,Schmidt MW,Wu S,et al.Regulation of transcriptome,translation,and proteome in response to environmental stress in fission yeast[J].Genome Biology,2012,13:R25.
  • 3Klaus GM,Christophe C,Henrik DM,et al.Proteomic changes in Debaryomyces hansenii upon exposure to NaCl stress[J].FEMS Yeast Research,2007,7(2):293-303.
  • 4乌日娜,岳喜庆,张和平.益生菌Lactobacillus casei Zhang在酸胁迫下的蛋白质组学研究[J].食品与发酵工业,2012,38(7):17-20. 被引量:5
  • 5XU S,ZHOU JW,LIU LM,et al.Arginine:A novel compatible solute to protect Candida glabrata against hyperosmotic stress[J].Process Biochemistry,2011,46(6):1 230-1 235.
  • 6Schmidt P,Walker J,Selway L,et al.Proteomic analysis of the pH response in the fungal pathogen Candida glabrata[J].PROTEOMICS,2008,8(3):534-544.
  • 7Bahieldin A,Sabir JSM,Ramadan A,et al.Control of glycerol biosynthesis under high salt stress in Arabidopsis[J].Functional Plant Biology,2013,41(1):87-95.
  • 8Hirasawa T,Yamada K,Nagahisa K,et al.Proteomic analysis of responses to osmotic stress in laboratory and sake-brewing strains of Saccharomyces cerevisiae[J].Process Biochemistry,2009,44(6):647-653.
  • 9Zhou XM,Ferraris JD,Burg MB.Mitochondrial reactive oxygen species contribute to high NaCl-induced activation of the transcription factor TonEBP/OREBP[J].American Journal of Physiology-renal Physiology,2006,290:1 169-1 176.
  • 10CHEN JY,ZHAO J,NING J,et al.NtProRP1,a novel proline-rich protein,is an osmotic stress-responsive factor and specifically functions in pollen tube growth and early embryogenesis in Nicotiana tabacum[J].Plant Cell and Environment,2014,37(2):499-511.

二级参考文献19

  • 1张和平,孟和毕力格,王俊国,孙天松,徐杰,王立平,云月英,乌日娜.分离自内蒙古传统发酵酸马奶中L.casei Zhang潜在益生特性的研究[J].中国乳品工业,2006,34(4):4-10. 被引量:46
  • 2田碧文,胡宏.中药及正常菌群抗衰老的机理[J].中国微生态学杂志,1996,8(6):46-49. 被引量:32
  • 3乌日娜,武俊瑞,孟和,张和平.乳酸菌酸胁迫反应机制研究进展[J].微生物学杂志,2007,27(2):62-66. 被引量:10
  • 4Wu Ri-na, Wang Li-ping, Wang Ji-cheng, et al. Isolation and preliminary probiotic selection of Lactobacilli from pou- miss in Inner Mongolia[ J]. Journal of Basic Microbiology, 2009, 49(3): 318-326.
  • 5Budin-verneuit A, Pichercau V, Aauffray Y, et al. Pro- teomic characterization of the acid tolerance response in Lactococcus lactis MG1363 [ J]. Proteomics, 2005, 5 (18) : 4794 -807.
  • 6Sanchez B, Champomier-Verges M, Collado M C, et al. Low-pH adaptation and the acid tolerance response of Bifidobacterium longum [ J]. Applied Environment Micro- biology, 2007, 73 (20) : 6 450 - 6 459.
  • 7De Angelis M, Gobbetti M, Bini L, et al. The acid-stress response in Lactobacillus sanfranciscensis CB1 [J]. Micro- biology, 2001, 147(7): 1 863- 1 873.
  • 8Lim E M,Ehrlich D S,Maguin E. Identification of stress-in- ducible proteins in LactobaciUus delbrueckii subsp, bulgari- cus [J].Electrophoresis, 2000, 21(12) : 2 557 -2 561.
  • 9Lee K, Lee H G, PI K, et al. The effect of low pH on protein expression by he probiotic bacterium Lactobacillus reuteri [ J]. Proteomics, 2008, 8 (8) : 1 624 - 1 630.
  • 10Blankenhorn D, Phillips J, Slonczewski J L. Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel elec- trophoresis [ J]. Journal of Bacteriology, 1999, 181 (7) :2209-2216.

共引文献4

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部