期刊文献+

基于高光谱成像技术和连续投影算法检测葡萄果皮花色苷含量 被引量:30

Determination of Anthocyanin Content in Grape Skins Using Hyperspectral Imaging Technique and Successive Projections Algorithm
下载PDF
导出
摘要 应用高光谱成像技术结合连续投影算法(SPA)实现葡萄果皮中花色苷含量的快速无损检测。采集60组样本高光谱图像,获取样本光谱曲线,并采用多元散射校正预处理方法提高信噪比。然后采用SPA选择光谱变量,将其作为多元线性回归(MLR)、偏最小二乘(PLS)模型和BP神经网络(BPNN)的输入变量,分别建立SPAMLR、SPA-PLS和SPA-BPNN模型并与全光谱变量PLS模型相比较。结果表明,SPA-MLR、SPA-BPNN和SPA-PLS模型的预测精度均优于全光谱变量PLS模型,其中SPA-PLS模型获得了最佳预测结果,其预测相关系数Rp和预测均方根误差(RMSEP)分别为0.900 0和0.550 6。结果表明,利用近红外高光谱成像技术能够有效检测酿酒葡萄果皮中花色苷含量。 This work aimed to determine the anthocyanin content in grape skins based on hyperspectral imaging technology in combination with successive projections algorithm (SPA).Cabernet Sauvignon (Vitis vinifera L.) grape berries from Shaanxi province were used as experimental materials.Hyperspectral images of 60 groups of grape samples were collected by near infrared hyperspectral camera and the anthocyanin contents in these samples were detected.Multiplicative scatter correction was used to improve the signal-to-noise ratio (SNR).Moreover,SPA was applied for the extraction of effective wavelengths (EWs),which showed least collinearity and redudancies in the spectral data.The selected effective wavelengths were used as the inputs of multiple linear regression (MLR),partial least squares (PLS) and BP neural network (BPNN).Then SPA-MLR,SPA-PLS and SPA-BPNN models were developed and compared with full-spectrum-PLS model.It was shown that SPA-MLR,SPA-PLS and SPA-BPNN models were better than full-spectrum-PLS model.The best performance was achieved by SPA-PLS model with Rp of 0.900 0 and RMSEP of 0.550 6.These results indicate that anthocyanin contents in grape skins could be measured effectively by using near infrared hyperspectral imaging.
出处 《食品科学》 EI CAS CSCD 北大核心 2014年第8期57-61,共5页 Food Science
基金 国家自然科学基金面上项目(61003151) 国家现代农业(葡萄)产业技术体系建设专项(CARS-30-02A) 中央高校基本科研业务费专项资金项目(QN2011099 QN2013062 QN2013055)
关键词 酿酒葡萄 花色苷 高光谱图像 连续投影法 偏最小二乘法 winegrape anthocyanin hyperspectral image successive projections algorithm (SPA) partial least squares (PLS)
  • 相关文献

参考文献24

  • 1HARDIE W J,OBRIEN T P,JAUDZEMS V G.Morphology,anatomy and development of the pericarp after anthesis in grape,Vitis vinifera L.[J].Australian Journal of Grape and Wine Research,1996,2(2):97-142.
  • 2DOWNEY M O,DOKOOZLIAN N K,KRSTIC M P.Cultural practice and environmental impacts on the flavonoid composition of grapes and wine:a review of recent research[J].American Journal of Enology and Viticulture,2006,57(3):257-268.
  • 3RIBEREAU-GAYON P,GLORIES Y,MAUJEAN A,et al.Handbook of enology:the chemistry of wine stabilization and treatments[M].Chichester:John Wiley & Sons Inc.,2006:136-139.
  • 4SUN D.Hyperspectralimaging for food quality analysis and control[M].Massachusetts:Academic Press,2010.
  • 5褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542. 被引量:565
  • 6ARA(U)JO M C U,SALDANHA T C B,GALV(A)O R K H,et al.The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J].Chemometrics and Intelligent Laboratory Systems,2001,57(2):65-73.
  • 7GALV(A)O R K H,ARA(U)JO M C U,SILVA E C,et al.Crossvalidation for the selection of spectral variables using the successive projections algorithm[J].Journal of the Brazilian Chemical Society,2007,18(8):1580-1584.
  • 8PONTES M J C,GALV(A)O R K H,ARA(U)JO M C U,et al.The successive projections algorithm for spectral variable selection in classification problems[J].Chemometrics and Intelligent Laboratory Systems,2005,78(1):11-18.
  • 9高洪智,卢启鹏,丁海泉,彭忠琦.基于连续投影算法的土壤总氮近红外特征波长的选取[J].光谱学与光谱分析,2009,29(11):2951-2954. 被引量:59
  • 10LIU Fei,HE Yong.Application of successive projections algorithm for variable selection to determine organic acids of plum vinegar[J].Food Chemistry,2009,115(4):1430-1436.

二级参考文献148

共引文献1024

同被引文献467

引证文献30

二级引证文献296

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部