期刊文献+

面向3D打印体积极小的拓扑优化技术 被引量:29

Topology Optimization for Minimal Volume in 3D Printing
下载PDF
导出
摘要 与传统制造所生产的产品相比,3D打印产品的成本仍相对较高.因此,如何能在不牺牲打印物体表面质量的前提下通过模型优化来减少打印材料消耗,对于降低打印成本至关重要.针对这一问题,借鉴传统渐进结构优化方法,结合Von Mises应力计算,给出一种面向3D打印体积极小的拓扑优化算法.该算法通过模型力学计算所得的最大Von Mises应力与材料允许应力之比来引导模型体积减小进化,直至最大Von Mises应力达到允许应力值为止.同时,引入多分辨率技术,由粗网格再到细网格进行优化计算,有效地提高了计算效率.与现有其他给定结构模式的方法相比,该优化结果能更好地体现模型荷载受力的传递路径. Compared with the traditional products manufacturing pattern, the cost of 3D printing products is still relatively high. It is important to optimize model to reduce print material consumption and printing costs without sacrificing print quality of the object surface. To solve this problem, we present a topology optimization algorithm for minimal volume in 3D printing with traditional evolutionary structural optimization methods combined with Von Mises stress. The algorithm calculates Von Mises stress of the model to guide the evolution of the volume reducing, until the maximum Von Mises stress reaches the allowable stress value of the material. Furthermore, we introduce multi-resolution technology to accelerate optimization computing from the coarse tetrahedral meshes to fine meshes, which effectively improves the computational efficiency. Compared with other existing methods, the optimization results of our method can be more flexible and better reflect the load transfer path of model under the given force.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第1期38-44,共7页 Journal of Computer Research and Development
基金 国家自然科学基金优秀青年基金项目(61222206) 中国科学院"百人"计划基金项目
关键词 3D打印 拓扑优化 渐进结构优化 多分辨率 3D printing topology optimization evolutionary structural optimization multi-resolution
  • 相关文献

参考文献14

  • 1刘利刚,徐文鹏,王伟明,et al.3D打印中的几何计算研究进展[J].计算机学报,2014,37(在线编号10).
  • 2Prevost R.Whiting E,Lefebvre S,et al.Make it stand:Balancing shapes for 3D fabrication[J].ACM Trans on Graphics,2013,32(4):81:1-81:10.
  • 3Bacher M,Whiting E,Bickel B,et al.Spin-it:Optimizingmoment of inertia for spinnable objects[J].ACM Trans on Graphics,2014,3.3(4):96:1-96:10.
  • 4Stava O,Vanek J,Benes B,et al.Stress relief:Improvingstructural strength of 3D printable objects[J].ACM Trans on Graphics,2012,31(4):48:1-48:11.
  • 5Zhou Q,Panetta J,Zorin D.Worst-case structural analysis[J].ACM Trans on Graphics,2013,32(4):137:1-137:12.
  • 6TeIea A,Jalba A.Voxel-based assessment of printability of3d shapes[C]//Proc of the IOth Int Conf on Mathematical Morphology and Its Applications to Image and Signal Processing.Berlin:Springer,2011:393-404.
  • 7Wang W.Wang T Y,Yang Z,et al.Cost-effective printingof 3D objects with skin-frame structures[J].ACM Trans on Graphics,2013,32(6):177:1-177:10.
  • 8Lu L,Sharf A,Zhao H.et al.Build-to-last:Strength toweight 3D printed objects[J].ACM Trans on Graphics,2014,33(4):97:1-97:10.
  • 9Xie Y M.Steven G P.A simple evolutionary procedure forstructural optimization[J].Computers Structures,1993,49(5):885-896.
  • 10Chu D N,Xie Y M,Hira A,et al.Evolutionary structuraloptimization for problems with stiffness constraints[J].Finite Elements in Analysis and Design,1996,21(4):239-251.

二级参考文献22

  • 1Bendsoe M P.Optimization of Structural Topology,Shape and Material[M].New York:Springer Verlag,1997.
  • 2Allaire G,Bonnetier E,Francfort G,et al.Shape Optimization by the Homogenization Method[J].Numerische Mathematik,1997,76(1):27-68.
  • 3Ambrosio L,Buttazzo G.An Optimal Design Problem with Perimeter Penalization[J].Calculus of Variations and Partial Differential Equations,1993,1:55-69.
  • 4Bendsoe M P,Sigmund O.Material Interpolation Schemes in Topology Optimization[J].Archive of Applied Mechanics,1999,69:635-654.
  • 5Xie Y M,Steven G P.Evolutionary Structural Optimization[M].New York:Springer Verlag,1997.
  • 6Annicchiarico W,Cerrolaza M.An Evolutionary Approcach for the Shape Optimizatin of Gereral Boundary Elements Models[J].Electronic Journal of Boundary Elements,2001(2):251-266.
  • 7Chang S Y,Youn S K.Material Cloud Method for Topology Optimization[C]//Proceedings of XXI International Congress of Theoretical and Applied Mechanics.Warsaw,Poland,2004:15-21.
  • 8Eschenauer H,Kobelev A,Schumacher A.Bubble Method for Topology and Shape Optimization of Structures[J].Structural Optimization,1994(8):42-51.
  • 9Sigmund O,Petersson J.Numerical Instabilities in Topology Optimization:a Survey on Procedures Dealing with Checkerboards,Mesh-Dependencies and Local Minima[J].Structural and Multidisciplinary Optimization,1998,16(1):68-75.
  • 10Poulsen T A.A Simple Scheme to Prevent Checkerboard Patterns and One-Node Connected Hinges in Topology Optimization[J].Structural and Multidisciplinary Optimization,2002,24(5):396-399.

共引文献6

同被引文献316

引证文献29

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部