期刊文献+

SnS_2-SnO_2/石墨烯复合材料的合成及其电化学储锂性能的研究 被引量:5

Synthesis and Electrochemical Li-storage Performance of SnS_2-SnO_2/Graphene Composites
下载PDF
导出
摘要 目的制备高容量和循环性能稳定的锂离子电池复合电极材料。方法通过L-半胱氨酸(Lcys)辅助水热法合成SnS2-SnO2/石墨烯复合纳米材料,采用XRD,SEM,TEM和HRTEM技术对其进行结构表征,并采用循环伏安、恒流充放电和电化学阻抗技术研究了其电化学贮锂性能。结果随着水热溶液中L-cys的量增加,复合材料中少层数结构SnS2的含量也增加。当Sn4+/L-cys的物质的量之比为1∶4时,制得了SnS2/石墨烯复合纳米材料,而且石墨烯的存在在一定程度上抑制了SnS2沿c轴方向的生长,减少了层状SnS2的层数。结论由于二维层状结构的SnS2具有与石墨烯类似的微观结构和形貌,与石墨烯的复合具有更好的匹配性和相互协同效应,增强了SnS2/石墨烯复合材料的电化学贮锂性能,使其具有较高的可逆储锂容量、良好的循环性能和增强的倍率特性。 Objective To prepare the nanomaterials with high specific capacity and stable cyclic performance as Li-ion battery anode. Methods The SnO2-SnS2/GNS composites were prepared by an L-cys-assisted hydrothermal method and characterized by XRD, SEM, TEM and HRTEM. The electrochemical performances of the composites for reversible lithium storage were measured by cyclic voltammogram, galvanostatic charge/discharge and electrochemical impedance spectroscopy. Results With the increasing amount of L-cys in the hydrothermal solution, the content of SnS2 in the low-rise structure of the composite material also increased. The SnS2/graphene nanocomposite could be prepared when the molar ratio of Sn^4+/L-cys was 1 ∶ 4. The presence of graphene in-hibited the growth of SnS2 along the c-axis direction to some extent, and reduced the layer number of the layered SnS2 . Conclusion Because the two-dimensional layered SnS2 had similar morphology and microstructure to graphene, the compositing of the layered SnS2 with graphene exhibited better synergetic effects. Therefore, the SnS2/graphene nanocomposite showed a high reversible spe-cific capacity with stable cyclic performance and enhanced rate capability.
出处 《表面技术》 EI CAS CSCD 北大核心 2015年第1期8-14,共7页 Surface Technology
基金 国家自然科学基金项目(21473156) 科技部国际合作专项(2012DFG42100) 浙江省重大科技计划专项项目(2013C01077) 岭南师范学院创新强校工程项目(0003014010)~~
关键词 二硫化锡 二氧化锡 石墨烯 复合纳米材料 锂离子电池 tin disulfide tin oxide graphene nanocomposites Li-ion battery
  • 相关文献

参考文献30

  • 1LIU Hong-dong, HUANG Jia-mu, LI Xin-lu, et al. Flower- like SnO2/Graphene Composite for High-capacity Lithium Storage [ J ]. Applied Surface Science, 2012,258 : 4917- 4921.
  • 2LI Xiang-long, JIA Yu-ying, LIANG Ming-hui, et al. Gra- phene-Confined Sn Nanosheets with Enhanced Lithium Stor- age Capability [ J ]. Advanced Materials, 2012,24 : 3538- 3543.
  • 3YANG Sheng-nan, LI Guo-rui, ZHU Qing, et al. Covalent Binding of Si Nanopartieles to Graphene Sheets and Its In- fluence on Lithium Storage Properties of Si Negative Elec- trode [ J ]. Journal of Materials Chemistry, 2012,22 : 3420- 3425.
  • 4SATHISH M, MITANI S, TOMAI T, et al. Uhrathin SnSz Nanoparticles on Graphene Nanosheets : Synthesis, Charac- terization, and Li-ion Storage Applications [ J ]. Journal of Physical Chemistry C ,2012,116 : 12475-12481.
  • 5WANG Qing-hong, JIAO Li-fang, HAN Yan, et al. CoS2 Hol- low Spheres: Fabrication and Their Application in Lithium- ion Batteries [ J ]. Journal of Physical Chemistry C, 2011, 115:8300-8304.
  • 6HASSOUN J, PANERO S, MULAS G, et al. An Electrochemi- cal Investigation of a Sn-Co-C Ternary Alloy as a NegativeElectrode in Li-ion Batteries [ J ]. Journal of Power Sources, 2007,171 : 928-931.
  • 7HASSOUN J,WACHTLER M,WOHLFAHRT-MEHRENS M, et al. Electrochemical Behaviour of Sn and Sn-C Composite Electrodes in LiBOB Containing Electrolytes [ J ]. Journal of Power Sources, 2011,196:349-354.
  • 8JHAN Y R, Dub J G, Tsai S Y. Synthesis of Confinement Structure of SnfC-C (MWCNTs) Composite Anode Materi- als for Lithium Ion Battery by Carbothermal Reduction[ Jl. Diamond and Related Materials ,2011,20:413--417.
  • 9KIM Y G, YOON Y S, Shin D W. Fabrication of Sn/SnO2 Composite Powder for Anode of Lithium Ion Battery by Aerosol Flame Deposition [ J 1. Journal of Analytical and Ap- plied Pyrolysis ,2009,85:557-560.
  • 10GEIM A K. Graphene: Status and Prospects [ J 1. Science, 2009,324 : 1530-1534.

同被引文献32

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部