期刊文献+

基于核特征近邻指标的批过程监视及仿真研究 被引量:3

Nearest Neighbors Index of Kernel Features Based Batch Processes Monitoring and Simulation Research
下载PDF
导出
摘要 批次生产过程为了不断满足快速增长的市场需求,经常进行生产装置的重组、负荷大小的调整以及品种的更换等,使批次过程的采样数据呈现出非线性、非高斯、多工况等复杂特征。针对这些特征,提出在批次过程的核特征空间利用核主元的k个近邻构建故障检测统计量指标进行过程监视的方法。将批次过程正常工况的数据按批次方向展开并进行标准化。采用核方法将其投影到核特征空间,确定出核主元,组成新的建模样本数据。通过相似性原理找到每个样本的k个近邻,构建k近邻的距离平方和故障检测指标,并采用核密度估计法确定出正常工况指标的统计控制限。利用SPE统计量对核残差空间同时进行监视。通过一个半导体生产过程的仿真实验结果表明了所提方法的有效性。 In order to meet the increasing market demand, batch processes often carry out recombination of producing device, adjustment of load size and replacement of variety, and so on. So, the characteristics of sampling data of batch processes appear nonlinear, non-Gaussian and multi-modes. A process monitoring method based on k nearest neighbor index of kernel feature space was proposed for batch processes. Firstly, the normal mode data of batch process was unfolded along batch direction and standardization was implemented. Secondly, after kernel method was used to put the raw data into the kernel feature space and the kernel principal components were extracted, a new modeling data set was formed. Then k nearest neighbors of each modeling data were found, k nearest neighbor distance square sum was constructed and calculated, meanwhile, they were treated as the monitoring statistics index. The control limit of the statistics index was determined by the kernel density estimation method. Moreover, SPE of the kernel feature space was used as the other statistic index for process monitoring. Finally, the results of simulation experiment of a semiconductor production process show the effectiveness of the proposed method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第7期1424-1429,共6页 Journal of System Simulation
基金 国家自然科学基金重点项目(61034006) 国家自然科学基金面上项目(60774070 61174119) 辽宁省教育厅科学研究一般项目(L2013155) 辽宁省博士启动基金项目(20131089)
关键词 核特征空间 过程监视 K近邻 批次过程 仿真实验 Kernel feature space process monitoring k nearest neighbors(kNN) batch processes simulation experiment
  • 相关文献

参考文献13

  • 1Qin S J. Survey on Data-Driven Industrial Process Monitoring and Diagnosis [J]. Annual Reviews in Control (S1367-5788), 2012, 36(2): 220-234.
  • 2Ge Z Q, S Z H, Gao, F R. Review of Recent Research on Data-Based Process Monitoring [J]. Industrial & Engineering Chemistry Research (S 0888-5885), 2013, 52(10): 3543-3562.
  • 3He Q P, Wang J. Fault Detection Using k-Nearest-Neighbor Rule for Semiconductor Manufacturing Processes [J]. IEEE Transactions on Semiconductor Manufacturing (S0894-6507), 2007, 20(4): 345-354.
  • 4He Q P, Wang J. Large-Scale Semiconductor Process Monitoring Using a Fast Pattern Recognition Based Method [J]. IEEE Transactions on Semiconductor Manufacturing (S0894-6507), 2010, 23(2): 194-200.
  • 5Verdier G,Ferreira A. Adaptive Mahalanobis Distance and k Nearest Neighbor Rule for Fault Detection in Semiconductor Manufacturing [J]. IEEE Transactions on Semiconductor Manufacturing (S0894-6507), 2011, 24(1): 59-68.
  • 6Dong D, McAvoy T J, Nonlinear Principal Component Analysis Based on Principal Curves and Neural Networks [J]. Computers and Chemical Engineering (S0098-1354), 1996, 20(1): 65-78.
  • 7邓晓刚,田学民.基于非线性主元子空间的故障模式识别方法[J].系统仿真学报,2009,21(2):478-481. 被引量:4
  • 8李楠,张云燕,李言俊.基于KPCA冗余检测的故障识别算法[J].系统仿真学报,2011,23(10):2079-2082. 被引量:7
  • 9Lee J M. Nonlinear Process Monitoring Using Kernel Principal Component Analysis [J]. Chemical Engineering Science (S0009-2509), 2004, 59(1): 223-234.
  • 10Qin S J, Cherry C. Good R, Wang J, Harrison C A. Semiconductor Manufacturing Process Control and Monitoring: a Fab-Wide Framework [J]. Journal of Process Control (S0959-1524), 2006, 16(3): 179-191.

二级参考文献24

  • 1张晓阳,孙宇.基于生物免疫机制的复杂系统健康监测与评估[J].系统仿真学报,2005,17(5):1212-1215. 被引量:8
  • 2黄宴委,彭铁根.基于核主元分析的非线性动态故障诊断[J].系统仿真学报,2005,17(9):2291-2294. 被引量:19
  • 3姜云春,邱静,刘冠军,钱彦岭.故障检测中的一种鲁棒自适应阈值方法[J].宇航学报,2006,27(1):36-40. 被引量:7
  • 4Lee J-M, Yoo C K, Choi S W, et al. Nonlinear Process Monitoring using Kernel Principal Component Analysis [J]. Chemical Engineering Science (S0009-2509), 2004, 59(1): 223-234.
  • 5Ku W, Storer R H, Georgakis C. Disturbance Detection and Isolation by Dynamic Principal Component Analysis [J]. Chemometrics and Intelligent Laboratory Systems (SO 169-7439), 1995, 30( 1 ): 179-196.
  • 6Bakshi B R. Multiscale PCA with Application to Multivariate Statistical Process Monitoring [J]. AICHE Journal (S0001-1541), 1998, 44(7): 1596-1609.
  • 7Westerhuis J A, Gurden S P, Smilde A K. Generalized Contribution Plots in Multivariate Statistical Process Monitoring [J]. Chemometrics and Intelligent Laboratory Systems (S0169-7439), 2005, 51(1): 95-114.
  • 8Dunia R, Qin S J, Edgar T F, Mcavoy T J. Identification of Faulty Sensors using Principal Component Analysis [J]. AICHE Journal (S0001-1541), 1996, 42( 10): 2797-2812.
  • 9Chiang L H, E L Russell, R D Braatz. Fault Detection and Diagnosis in Industrial Systems [M]. London, UK: Springer, 2001.
  • 10Kassidas A, Taylor P A, Macgregor J F. Offline Diagnosis of Deterministic Faults in Continuous Dynamic Multivariable Processes using Speech Recognition Methods [J]. Journal of Process Control (S0959-1524), 1998, 8(5-6): 381-393.

共引文献9

同被引文献25

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部