摘要
人在环路的空战仿真训练系统中,智能对手飞机需要根据当前系统中的态势进行实时规划,快速构成有利的攻击态势,体现出智能对手飞机的"聪明"性,飞行员通过和"聪明"的对手进行对抗训练,可以提升自己的战术素养,以当前态势中对敌方的探测概率为代价函数,采用改进型A*算法,探索智能对手飞机的下一步航向角和俯仰角的变化,得到智能对手的下1个仿真步长的位置和姿态。通过1组实际的飞行数据为样本数据,验证了该方法的可行性,算法效率高,能够满足实时性较强的空战仿真需求。
In man-in-the-loop combat simulation training systems, intelligent rival aircraft needs to be based on the current situation real-time planning, and constitutes an optimization situation quickly, so that pilots train with the smart opponents can enhance their tactical ability. Using current situation detect enemy probability as the cost function and an improved A star algorithm to explore the next smart rival aircraft heading angle and pitch angle, a smart opponent’s next simulation step position and attitude was obtained. A set of actual flight data as the sample data verified the applicability of the method, which is feasible and of high efficiency. The algorithm can meet the strong real-time combat simulation needs.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2014年第10期2306-2310,共5页
Journal of System Simulation
关键词
RCS
探测概率
A*算法
轨迹实时规划
RCS
detection probability
A star algorithm
real-time route planning