期刊文献+

一类非线性分数阶微分方程边值问题的正解 被引量:1

Positive Solution to Boundary Value Problem for a Class of Nonlinear Fractional Differential Equation
下载PDF
导出
摘要 利用锥拉伸和压缩不动点定理研究一类非线性分数阶微分方程积分边值问题,获得了其相应的格林函数及正解的存在性条件,并给出了应用实例. Using fixed point theory of cone expansion and compression of norm type,we investigated a class of boundary value problem for nonlinear fractional differential equation with integral conditions.The relevant Green function and some sufficient conditions on the existence of positive solutions were established.Some examples were given to illustrate the application of the result.
作者 李耀红
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第1期21-26,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11226119) 安徽省高校自然科学基金重点项目(批准号:KJ2014A252)
关键词 正解 积分边值问题 分数阶微分方程 不动点定理 positive solution integral boundary value problem fractional differential equation fixed point theory
  • 相关文献

参考文献10

  • 1YAO Qingliu. Positive Solutions for Eigenvalue Problems of Fourth-Order Elastic Beam Equations EJ]. Appl Math Lett, 2004, 17(2): 237-243.
  • 2MA Ruyun, XU Jia. Bifurcation from Interval and Positive Solutions of a Nonlinear Fourth-Order Boundary Value Problem [J]. Nonlinear Anal: Theory, Methods : Applications, 2010, 72(1): 113-122.
  • 3YAO Qingliu. Positive Solutions of Nonlinear Beam Equations with Time and Space Singularities [J]. J Matb Anal Appl, 2011, 374(2): 681 692.
  • 4LU Haixia, SUN Li, SUN Jingxian. Existence of Positive Solutions to a Non-positive Elastic Beam Equation with Both Ends Fixed [J], Boundary Value Problems, 2012, 2012(1) : 1-10.
  • 5XU Xiaojie, JIANG Daqing, YUAN Chengjun. Multiple Positive Solutions for the Boundary Value Problem of a Nonlinear Fractional Differential Equation [J], Nonlinear Anal: Theory, Methods & Applications, 2009, 71(10) : 4676-4688.
  • 6BAI Zhanbing, SUN Weichen. Existence and Multiplicity of Positive Solutions for Singular Fractional Boundary Value Problems[J],Comput Math Appl, 2012, 63(9): 1369- 1381.
  • 7BAI Zhanbing, SUN Weichen, ZHANG Weihai. Positive Solutions for Boundary Value Problems of Singular Fractional Differential Equations[J/OL]. Abstr Appl Anal, 2013, http://dx, doi. org/10.1155/2013/129640.
  • 8Kilbas A A, Srivastava H M, Trujillo J J, Theory and Applications of Fractional Differential Equations [M]. Amsterdam; Elsevier, 2006.
  • 9郭大钧,非线性泛函分析[M].2版.济南:山东科学技术出版社,2004.
  • 10李耀红,张海燕.一类具分数阶积分条件的分数阶微分方程组解的存在唯一性[J].吉林大学学报(理学版),2014,52(1):29-33. 被引量:3

二级参考文献12

  • 1Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations [M]. Amsterdam: Elsevier, 2006.
  • 2Lakshmikantham V, Leela S, Devi J V. Theory of Fractional Dynamic Systems [M]. New York: Cambridge Scientific Publishers, 2009.
  • 3ZHANG Shu-qin. Positive Solution for Boundary Value Problem of Nonlinear Frctional Differential Equations[J]. Electron J Differ Eq, 2006, 2006(36): 1-12.
  • 4WEI Zhong-li, LI Qing-dong, CHE Jun-ling. Initial Value Problems for Fractional Differential Eequations Involving Riemann-Liouville Sequential Fractional Derivative [J]. J Math Anal Appl, 2010, 367(1): 260-272.
  • 5BAI Zhan-bing. Solvability for a Class of Fractional m-Point Boundary Value Problem at Resonance [J]. Comput Math Appl, 2011, 62(3):1292-1302.
  • 6YANG Xiong, WEI Zhong-li, WEI Dong. Existence of Positive Solutions for the Boundary Value Problem of Nonlinear Fractional Differential Equations[J]. Commun Nonlinear Sci Numer Simul, 2012, 17(1) : 85-92.
  • 7SU Xin-wei. Boundary Value Problem for a Coupled System of Nonlinear Fractional Differential Equations[J]. Appl Math Lett, 2009, 22(1): 64-69.
  • 8Ahmada Bashir, Nieto J J. Existence Results for a Coupled System of Nonlinear Fractional Differential Equations with Three-Point Boundary Conditions [J]. Comput Math Appl, 2009, 58(9): 1838-1843.
  • 9ZHAO Yi-ge, SUN Shu-rong, HAN Zhen-lai, et al. Positive Solutions for a Coupled System of Nonlinear Differential Equations of Mixed Fractional Orders [J]. Advances in Difference Equations, 2011, 2011(1) : 64-69.
  • 10JIANG Wei-hua. Solvability for a Coupled System of Fractional Differential Equations at Resonance [J]. Nonlinear Anal, 2012, 13(5): 2285-2292.

共引文献7

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部