期刊文献+

复合凸优化问题全对偶性的等价刻画 被引量:7

Some Characterizations of Total Duality for a Composed Convex Optimization
下载PDF
导出
摘要 先建立一类复合凸优化问题的对偶问题,再利用次微分性质引入关于复合凸函数的一类新的Moreau-Rockafellar法则,等价刻画了该复合凸优化问题的稳定全对偶及全对偶. We first introduced the dual schemes for a composed convex optimization problem.Then,using the properties of subdifferential,we introduced a new Moreau-Rockafellar formula for a composed convex function.And using the Moreau-Rockafellar formula,we obtained some necessary and sufficient conditions which characterize the stable total duality for the composed convex optimization problem.
作者 孙祥凯
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第1期33-36,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11301570) 中国博士后科学基金(批准号:2013M540697) 重庆市基础与前沿研究计划项目(批准号:cstc2013jcyjA00003)
关键词 复合凸优化问题 Moreau-Rockafellar法则 稳定全对偶 全对偶 composed convex optimization problem Moreau-Rockafellar formula stable total duality total duality
  • 相关文献

参考文献8

  • 1Bot R I, Grad S M, Wanka G. A New Constraint Qualification for the Formula of the Subdifferential of Composed Convex Functions in Infinite Dimensional Spaces [J]. Mathematische Nachrichten, 2008, 281(8): 1088 -1107.
  • 2Bot R I, Grad S M, Wanka G. Generalized Moreau-Rockafellar Results for Composed Convex Functions [J]. Optimization, 2009, 58(7): 917- 933.
  • 3赵丹,孙祥凯.复合凸优化问题的稳定强对偶[J].吉林大学学报(理学版),2013,51(3):441-443. 被引量:6
  • 4LI Chong, FANG Donghui, L6pez G, et al. Stable and Total Fenchel Duality for Convex Optimization Problems in Locally Convex Spaces [J]. SIAM Journal on Optimization, 2009, 20(2) : 1032- 1051.
  • 5Bot R I, Wanka G. A Weaker Regularity Condition for Subdifferential Calculus and Fenchel Duality in Infinite Dimensional Spaces [J], Nonlinear Analysis: Theory, Methods :,. Applications, 2006, 64(12 : 2787-2804.
  • 6got R 1. Coniugate Duality in Convex Optimization[M]. Berlin: Springer Verlag, 2010.
  • 7FANG Donghui, LI Chong, YANG Xiaoqi. Stable and Total Fenchel Duality for DC Optimization Problems in Locally Convex Spaces [J]. SIAM Journal on Optimization, 2011, 21(3): 750-760.
  • 8FANG Donghui, LI Chong, YANG Xiaoqi. Asymptotic Closure Condition and Fenchel I)uality for I)(" Optimization Problems in Locally Convex Spaces[J] Nonlinear Analysis: Theory, Methods :- Applications, 2012, 75(8): 3672-3681.

二级参考文献11

  • 1BurkeJ V. Ferris M C. A Gauss-Newton Method for Convex Composite Optimization[J]. Mathematical Programming. 1995. 71(2): 179-194.
  • 2Combari C. Laghdir M. Thibault L. A Note on Subdifferentials of Convex Composite Functionals[J]. Archiv der Mathematik. 1996. 67(;3): 239-252.
  • 3Zalinescu C. Convex Analysis in General Vector Spaces[M]. Singapore: World Scientific. 2002.
  • 4ZHENG Xi-yin. Ng K F. Strong KKT Conditions and Weak Sharp Solutions in Convex Composite Optimization[J]. Mathematical Programming, 2011. 126(2): 259-279.
  • 5Bot R I, Grad S M. Wanka G. A New Constraint Qualification for the Formula of the Subdifferential of Composed Convex Functions in Infinite Dimensional Spaces[J]. Mathematische Nachrichten , 200S. 2S1(S): 10SS-1107.
  • 6Bot R I, Grad S M. Wanka G. Generalized Moreau-Rockafellar Results for Composed Convex Functions[J]. Optimization, 2009. 5S(7): 917-933.
  • 7Bot R 1. Conjugate Duality in Convex Optimization[M]. Berlin: Springer-Verlag, 2010.
  • 8LI Chong. FANG Dong-hui , Lopez G, et al. Stable and Total Fenchel Duality for Convex Optimization Problems in Locally Convex Spaces[J]. SIAMJournal on Optimization, 2009. 20(2): 1032-1051.
  • 9Fang D H. Li C. Ng KF. Constraint Qualifications for Optimality Conditions and Total Lagrange Dualities in Convex Infinite Programming[J]. Nonlinear Analysis: Theory. Methods &. Applications, 2010, 73(5) :.1143-1159.
  • 10Jeyakumar V, Dinh N, Lee G M. A New Closed Cone Constraint Qualification for Convex Optimization[R]. Sydney: University of New South Wales, 2004.

共引文献5

同被引文献33

  • 1Li C, Fang D H, Lopez C~ et al. Stable and total Fenchel duality for convex optimization problems in locally convex spaces [J]. SIAM J Optim, 2009, 20:1 032-1 051.
  • 2Li C, Ng K F, Pong T K. Constraint qualifications for convex inequality systems with applications in constrained optimization [J]. SI.AM J Optim, 2008, 19: i63-187.
  • 3Fang D H, Li C, Ng K F. Constraint qualifications for optimality conditions and total Lagrangian dualities in convex infinite programming [J]. SIAM J Optim, 2010, 73:1 143-1 159.
  • 4Fang D H, Li C, Ng K F. Constraint qualifications for extended Farkas's lemmas and Lagrangian dualities in convex infinite programming [J]. SIAM J Optim, 2009, 20: 131-132.
  • 5Li C, Ng K F, Pong T K. The SECQ linear regularity and the strong CHIP for infinite system of closed convex sets in normed linear spaces [J]. SIAM J Optim, 2007, 15: 643-666.
  • 6Gobema M A, Jeyakumar V, Lopez M A. Necessary and sufficient conditions for solvability of systems of infinite convex inequalities [J]. Nonlinear Anal, 2008, 68:1 184-1 194.
  • 7Lemaire B. Application of a subdifferential of a convex composite functional to optimal control in variational inequalities [C]//Nondifferentiable optimization: motivations and applications(Sopron, 1984). Berlin: Lecture Notes in Econom and Math Systems 255, 1985: 103-117.
  • 8Zhou Y Y, Li G~ The Totand-Fenchel-Lagrange duality of DC programs for composite convex functions[J]. Numerical Algebra Control and Optimization, 2014, 4: 9-23.
  • 9Zalinescu C. Convex Analysis in General Vector Spaces [M]. New Jersey: World Scientific, 2002.
  • 10Rockafellar R T. Convex Analysis [M]. Princeton: Princeton University Press, 1970.

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部