期刊文献+

基于GPU的多类支持向量机改进算法 被引量:2

Improvement of Multiclass Support Vector Machines Based on Graphic Processor
下载PDF
导出
摘要 针对支持向量机算法耗时较长的问题,利用并行计算思想,基于图形处理器对多类支持向量机算法——Crammer-Singer算法进行改进,并利用循环展开、数据暂留、缓存和开放运算语言等技术对算法加以实现.分别在4个数据集上对原算法和改进算法进行对比实验,结果表明,改进算法在性能上获得了较大提升. According to the phenomenon that the support vector machine algorithm takes too much time,the idea of using parallel computation was used to solve this problem.Based on this,an improvement of the classic multiclass support vector machine algorithm first proposed by Crammer and Singer was made,and it was realized by using the great parallel ability of graphic processor.Technology of loop unrolling,data staying,cache and open computing language were used for implementing the improved algorithm.The original algorithm and the improved algorithm were executed on the same four datasets.And the experimental results show that the improved algorithm is much better than the original algorithm in performance of time.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第1期107-111,共5页 Journal of Jilin University:Science Edition
基金 教育部博士学科点专项基金(批准号:20120061110044)
关键词 支持向量机 多分类 图形处理器 并行计算 开放运算语言 support vector machine multiclass graphic processing unit parallel computation open computing language
  • 相关文献

参考文献18

  • 1丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. 被引量:925
  • 2Crammer K, Singer Y. On the Algorithmic Implementation of Muhiclass Kernel-Based Vector Machines [J]. The Journal of Machine Learning Research, 2002, 2:265 292.
  • 3Weston J, Watkins C. Support Vector Machines for Multi-class Pattern Recognition [C]//Proceedings of the Seventh European Symposium on Artificial Neural Networks. Bruges: DBLP, 1999: 219-224.
  • 4Platt J C, Cristianini N, Shawe-Taylor J. Large Margin DAGs for Multiclass Classification [C]//Proceedings of Neural Information Processing Systems. Cambridge: MIT Press, 2000: 547-553.
  • 5Tsochantaridis I, Hofmann T, Joachims T, et al. Support Vector Machine Learning for Interdependent and Structured Output Spaces[C]//Proceedings of the Twenty-First International Conference on Machine Learning. New York: ACM, 2004: 104.
  • 6陈国良,孙广中,徐云,龙柏.并行计算的一体化研究现状与发展趋势[J].科学通报,2009,54(8):1043-1049. 被引量:96
  • 7Poulet F, Do T N. Enterprise Information Systems V [M]. Berlin: Springer, 2005= 177-184. bmezaris/publications/wiamisll, pdf. Dieleman S, Oord A, Van den, Schrauwen B. Parallel One versus-Rest SVM Training on the GPU [C/OL:. 2012-02 07. http//www, biglearn, org/2012/file/papers/biglearn2012-Submission_6, pdL.
  • 8Do T N, Nguyen V H. A NoveI Speed-up SVM Algorithm for Massive Classification Tasks [C]//IEEE International Conference on Research, Innovation and Vision for the Future. Piscataway: IEEE, 2008= 215-220.
  • 9Cao L J, Keerthi S S, Ong C J, et al. Parallel Sequential Minimal Optimization for the Training of Support Vector Machines [J] IEEETransactions on Neural Networks, 2006, 17(4)= 1039-1049.
  • 10Catanzaro B, Sundaram N, Keutzer K. Fast'Support Vector Machine Training and Classification on Graphics Processors [C]//Proceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008: 104-111.

二级参考文献78

共引文献1022

同被引文献48

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部