期刊文献+

硝酸盐污染地下水原位碳源注入生物修复优化方案研究 被引量:3

Optimization of In-Situ Carbon Injection Bioremediation of Nitrate Contaminated Groundwater
下载PDF
导出
摘要 以北京某场地生活垃圾填埋场硝酸盐污染地下水为研究对象,针对原位生物修复技术,建立生物耦合Monod(RT3D)溶质运移模型。利用遗传算法(GA)和模拟退火法(SA)对地下水硝酸盐污染羽治理区开展了碳源(乙醇)注入备选井方案和原位生物修复系统进行模拟优化研究。优化结果表明,在满足硝酸盐氮浓度降低到10mg·L-1的目标下,GA和SA两种优化方案均优化确定相同的3口碳源注入井,比原设计节省15口井。100d后硝酸盐氮生物降解总量去除率分别为90.78%和84.51%。碳源注入井的布置方式呈三角点布置,且上游点的碳源注入量大于其他两点注入量。原位生物修复两种优化算法对比表明SA优化系统治理成本比GA节省1.46%,且收敛性强,波动性小,但计算时间较长。 In-situ carbon injection is a promising and economically effective technique for enhanced biodenitrification of groundwater con-taminated by nitrate. Optimizing carbon injection can improve remediation efficiency. In this paper, a landfill site in Beijing was selected to perform an optimization study. A biological coupling Monod solute transport model(RT3D)based on in situ bioremediation technology was established. Genetic Algorithm(GA)and Simulated Annealing(SA)were used to optimize the layout of potential carbon(ethanol)injection wells in the control areas of groundwater nitrate plumes. The results show that, at 10 mg·L-1 of target nitrate concentration in the studied area, both GA and SA methods obtained the same three carbon injection wells, 15 wells fewer than the originally designed ones. These three injection wells should be arranged in triangular position. More carbon source should be injected in the upstream well than in two downstream wells. After 100 d of injection, the total removal of nitrate nitrogen was 90.78% and 84.51% for GA and SA, respectively. Compared to GA, SA cost 1.46% less, with stronger convergence and smaller variability but longer computing time.
出处 《农业环境科学学报》 CAS CSCD 北大核心 2014年第10期2014-2021,共8页 Journal of Agro-Environment Science
基金 国家高技术研究发展计划(863计划)项目(2012AA062603)
关键词 硝酸盐 原位生物修复 优化 遗传算法 模拟退火法 RT3D nitrate RT3D in situ bioremediation optimization genetic algorithm simulated annealing
  • 相关文献

参考文献28

  • 1Haugen K, Semme ns M, Novak P. A novel in sitn technology for the treatment of nitrate contaminated groundwater[J]. Water Research, 2002, 36(14) : 3497-3506.
  • 2Sadeq M, Moe C L, Attarassi B, et al. Drinking water nitrate and preva- lence of methemoglobinemia among infants and children aged 1-7 years in Moroccan areas[J]. International Journal of Hygiene and Environ- mental Health, 2008, 211 (5) : 546-554.
  • 3王振兴,李向全,侯新伟,刘玲霞.地下水硝酸盐污染的生物修复技术研究进展[J].环境科学与技术,2012,35(S1):163-166. 被引量:14
  • 4Lee M S, Lee K K, Hyun Y, et al. Nitrogen transformation and transport modeling in groundwater aquifers[J]. Ecological Modelling, 2006, 192 ( 1 ) : 143-159.
  • 5Eljamal O, Jinno K, Hosokawa T. Modeling of solute transport with bioremediation processes using sawdust as a Matrix[J]. Water, Air, and Soil Pollution, 2008, 195 ( 1-4 ) : 115-127.
  • 6Prommer H, Tuxen N, Bjerg P L. Fringe-controlled natural attenuation of phenoxy acids in a landfill plume:Integration of field-scale processes by reactive transport modeling[J]. Environmental Science & Technolo- gy, 2006, 40(15) :4732-4738.
  • 7Shieh H J, Peralta R C. Optimal in situ bioremediation design by hybrid genetic algorithm-simulated annealing[J]. Journal of Water Resources Planning and Management, 2005, 131 ( 1 ) : 67-78.
  • 8Yoon J H, Shoemaker C A. Improved real-coded GA for groundwater bioremediation[J]. Journal of Computing in Civil Engineering, 2001, 15 (3):224-231.
  • 9Wang M, Zhang C. Ground water management optimization using genetic algorithms and simulated annealing:Formulation and comparison [J]. Journal of the American Water Resources Association, 1998, 34 (3):519-530.
  • 10Huang C, Mayer A S. Pump-and-treat optimization using well loca- tions and pumping rates as decision variables[J]. Water Resources Re- search, 1997, 33(5) : 1001-1012.

二级参考文献98

共引文献154

同被引文献17

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部