期刊文献+

伺服约束控制中基于广义虚位移分解的约束违约抑制

Elimination of Constraint Violation Based on Decomposition of Generalized Virtual Displacements under Servo Constraint Control
下载PDF
导出
摘要 基于Udwadia和Kalaba方程的伺服约束控制理论可以较好地应用在机械系统的轨迹跟踪控制中。在伺服约束控制中,对约束系统动力学模型的数值积分过程会产生对低阶约束的违约,同时还存在初始值不相容引起的控制偏差甚至系统不稳定问题。利用系统广义质量矩阵的乔利斯基分解,将描述系统的广义虚位移向量经过变换,在约束流形上分解为约束方向与约束允许方向,从而分离出速率约束及坐标约束违约部分,在此基础上推导出修正公式。以二自由度机械臂为仿真对象,在伺服约束轨迹控制中的应用进行了仿真研究。结果表明,基于虚位移分解的方法可以对伺服控制中的约束违约进行抑制,同时也可以解决系统初始条件不相容引起的问题。 The servo constraint control theory based on Udwadia and Kalaba equations can be applied in the tracking control of mechanical systems. The numerical solutions under servo constraint control may violate the lowerorder constraint equations,together with the inconsistent initial conditions,which result in control error even unstable problem. In this paper, using the Cholesky decomposition of the generalized mass matrix and the coordinates transformation,the generalized virtual displacements is decomposed in constrained directions and admissible directions,thus the constraint violation of the generalized velocity and configuration are separated,and the modified equations are obtained. Finally,the simulation study of a mechanical manipulator with two degrees of freedom is made and the results show that the algorithm can eliminate the constraint violation and solve the problem caused by inconsistent initial conditions under servo constraint trajectory control.
出处 《机械科学与技术》 CSCD 北大核心 2014年第12期1811-1814,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51205029) 中央高校基本科研业务费专项基金项目(CHD2011TD016) 教育部留学回国人员科研启动基金项目(20101174)资助
关键词 虚位移分解 约束违约 初始条件 伺服约束控制 算法 algorithms computer simulation constraint violation control decomposition of virtual displacement degrees of freedom(mechanics) initial value initial value problems Jacobian matrices manipulators mathematical operators mathematical transformations MATLAB servo constraint control trajectories velocity
  • 相关文献

参考文献14

  • 1Udwadia F E.A new perspective on the tracking control of nonlinear structural and mechanical systems[J].Proceedings of the Royal Society,Series A:Mathematical,Physical and Engineering Sciences,2003,459(2035):1783-1800.
  • 2Braun D J,Goldfarb M.Eliminating constraint drift in the numerical simulation of constrained dynamical systems[J].Computer Methods in Applied Mechanics and Engineering,2009,198:3151-3160.
  • 3Baumgarte J.Stabilization of constraints and integrals of motion in dynamical systems[J].Computer Methods in Applied Mechanics and Engineering,1972,1(1):1-16.
  • 4孔向东,钟万勰.非线性系统动力学微分代数方程约束违约的自动修正[J].大连理工大学学报,1999,39(1):22-25. 被引量:5
  • 5刘颖,马建敏,苏芳,张文.多体系统动力学方程的无违约数值计算方法[J].计算力学学报,2010,27(5):942-947. 被引量:3
  • 6刘颖,马建敏.多体系统动力学方程的反馈参数自适应约束违约稳定法[J].复旦学报(自然科学版),2012,51(4):432-436. 被引量:1
  • 7Lin S T,Chen M W.A PID type constraint stabilization method for numerical integration of multibody systems[J].Journal of Computational and Nonlinear Dynamics,2011,6(10):44501-44506.
  • 8Braun D J,Goldfarb M.Simulation of constrained mechanical systems-part I:an equation of motion[J].Journal of Applied Mechanics,2012,79(4):410171-410178.
  • 9丁洁玉,潘振宽.多体系统动力学微分-代数方程广义-α投影法[J].工程力学,2013,30(4):380-384. 被引量:12
  • 10Blajer W.An orthonormal tangent space method for constrained multibody systems[J].Computer Methods in Applied Mechanics and Engineering,1995,121(1):45-57.

二级参考文献28

  • 1付士慧,王琪.多体系统动力学方程违约修正的数值计算方法[J].计算力学学报,2007,24(1):44-49. 被引量:9
  • 2潘振宽 洪嘉振 等.多体系统动力学微分/代数方程位置速度约束违约自动修正方法.多体系统动力学与控制[M].北京:北京理工大学出版社,1996.31-35.
  • 3Flores P, Ambrosio J, et al. Kinematics and Dynamics of Multi-body Systems with Imperfect Joints [ M]. Berlin, Heidelberg & Springer-Verlag, 2008.
  • 4Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems[J]. Comp. Math. in Appl. Mech. and Engineering, 1972,1 : 1-16.
  • 5Baumgarte J. A new method of stabilization for holonomic constraints[J]. Journal of Applied Mechanics, 1983,50: 869-870.
  • 6Chiou J C, Wu S D. Constraint violation stabilization using input-output feedback linearization in multi-body dynamic analysis[J]. Journal of Guidance, Control and Dynamics, 1998,21 (2):222-228.
  • 7Ascher U M. On symmetric schemes and differentialalgebraic equations[J]. SIAM J. Sci. Stat. Com., 1989,10:937-949.
  • 8Brenan K E, Campbell S L, Petzold L R. Numerical solution of initial-value problems in differential-algebraic equations[J].Elsevier, New York, 1989.
  • 9Ascher U M, Petzold L R. Projected implicit Runge-Kutta methods for differential-algebraic equations [J]. SIAM Journal on Numerical Analysis, 1991, 28(4): 1097-1120.
  • 10Brasey V, Hairer E. Half-explicit Runge-Kutta methods for differential-algebraic systems of in-dex-2 [J]. SIAM Journal on Numerical Analysis, 1993,30 (2):538-552.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部