期刊文献+

三维边界元法高阶元几乎奇异积分半解析法 被引量:2

A NEW SEMI-ANALYTIC ALGORITHM OF NEARLY SINGULAR INTEGRALS IN HIGH ORDER BOUNDARY ELEMENT ANALYSIS OF 3D POTENTIAL
下载PDF
导出
摘要 分析了三维边界元法高阶曲面单元几何特征,定义接近度来表征源点与积分单元的接近程度.利用源点在积分单元上的垂足点建立局部极坐标系,构造与几乎奇异积分核函数具有相同奇异性的近似函数.从奇异积分核函数中扣除其近似函数,分离出积分核中主导的奇异函数部分,将奇异积分分解为规则核函数和奇异核函数两项积分.规则核函数积分应用常规Gauss数值积分计算,奇异核函数积分在局部极坐标系ρθ下分离积分变量ρ和θ,对ρ积分建立解析计算列式,对θ积分应用常规Gauss数值积分计算,从而对三维位势问题高阶边界单元几乎强奇异和几乎超奇异积分建立一种新的半解析算法.给出了若干温度场算例,采用边界元法高阶单元几乎奇异积分半解析法计算了近边界内点位势和位势梯度,并与线性单元正则化算法计算结果对比,结果证明提出的半解析法计算几乎奇异面积分和薄壁结构更加高效. By analyzing the geometric feature of 8-noded quadrilateral element in three dimensional boundary element method (3D BEM), the relative distance is first defined as the approach degree from a source point to the high order surface dement. And then a local polar coordinate pO is built which origin point is the project point of the source point on the dement surface. The approximate singular kernel function is constructed corresponding to the nearly singular integral on high order surface elements in 3D potential BEM by a series of deduction, which has the same singularity as the nearly singular kernel function. The leading singular part is separated by subtracting the approximate kernel function from the original kernel function. Thus the nearly singular surface integrals on high order elements are transformed into the sum of both the non-singular integrals and singular integrals. The former can be efficiently computed by the Gaussian quadrature. The integral variables p and 0 of the later are separated in the local polar coordinate. The singular surface integrals with respect to polar variable p are firstly expressed by the analytic formulations. Then the surface integrals are transformed into the line integrals with respect to variable 0, which can be evaluated by the Gaussian quadrature. Consequently, the new semi-analytic algorithm is established to calculate the nearly strongly and hyper-singular surface integrals on high order element in 3D potential BEM. Some numerical examples about the high order BE analysis for 3D heat conduction problems are given to demonstrate the efficiency and accuracy of the present semi-analytic algorithm. In comparison with the published regularization algorithm which is applied to calculating the nearly singular integrals on 3-noded triangular element, the present semi-analytic algorithm with 8-noded quadrilateral element can evaluate the potentials and potential gradients of inner points more close to the boundary. Moreover, the semi-analytic algorithm can be applied to more efficiently analyze thin structures in 3D potentials.
出处 《力学学报》 EI CSCD 北大核心 2014年第3期417-427,共11页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(11272111 11372094)~~
关键词 三维 位势 边界元法 高阶单元 几乎奇异积分 半解析法 3D, potential, BEM, high order element, nearly singular integrals, semi-analytic method
  • 相关文献

参考文献16

  • 1Sladek V, Sladek J, Tanaka M. Numerical integration of logarithmic and nearly logarithmic singularity in BEMs. Applied Mathematical Modelling, 2001, 25:901-922.
  • 2Padhi GS, Shenoi RA, Moy SS, et al. Analytic integration of kernel shape function product integrals in the boundary element method. Computers and Structures, 2001, 79:1325-1333.
  • 3Shhiah YC, Shi YX. Heat conduction across thermal barrier coatings of anisotropic substrates. International Communications in Heat and Mass Transfer, 2006, 33:827-835.
  • 4Niu ZR, Cheng CZ, Zhou HL, et al. Analytic formulations for calcu- lating nearly singular integrals in two-dimensional BEM. Engineer- ing Analysis with Boundary Elements, 2007, 31 : 949-964.
  • 5牛忠荣,王秀喜,周焕林.边界元法计算近边界点参量的一个通用算法[J].力学学报,2001,33(2):275-283. 被引量:20
  • 6张耀明,孙翠莲,谷岩.边界积分方程中近奇异积分计算的一种变量替换法[J].力学学报,2008,40(2):207-214. 被引量:15
  • 7Dehghan M, Hosseinzadeh H. Calculation of 2D singular and near singular integrals of boundary elements method on complex space C. Applied Mathematical Modelling, 2012, 36:545-560.
  • 8Dehghan M, Hosseinzadeh H. Obtaining the upper bound of dis- cretization error and critical boundary integrals of circular arc ele- ment method. Mathematical and Computer Modelling, 2012, 55: 517-529.
  • 9Milroy J, Hinduja S, Davey K. The 3-D thermoelastic boundary el- ement method: Analytical integration for linear isoparametric trian- gular elements. Appl Math Model, 1997, 21 : 763-782.
  • 10Liu YJ. Analysis of shell-like structures by the boundary element method based on 3-D elasticity: Formulation and verification. In- ternational Journal Jbr Numerical Methods in Engineering, 1998, 41(3): 541-558.

二级参考文献19

  • 1王有成,李洪求,陈海波,吴约.奇性校正特解场法计算任意点应力和位移[J].力学学报,1994,26(2):222-232. 被引量:9
  • 2董春迎,谢志成,姚振汉,杜庆华.边界积分方程中超奇异积分的解法[J].力学进展,1995,25(3):424-429. 被引量:7
  • 3张耀明,吕和祥,王利民.位势平面问题的新的规则化边界积分方程[J].应用数学和力学,2006,27(9):1017-1022. 被引量:12
  • 4黎在良,断裂力学中的边界数值方法,1996年
  • 5雷同如,数值计算与计算机应用,1993年,14卷,1期,38页
  • 6Hong H,J Eng Mech,1988年,114卷,6期,1028页
  • 7Sladek V, Sladek J, Tanaka M. Optimal transformations of the integration variables in computation of singular integrals in BEM. Int J Numer Methods Eng, 2000, 47:1263~1283
  • 8Luo JF, Liu Y J, Berger EJ. Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method. Computational Mechanics,1998,22:404~412
  • 9Liu Y J, Fan H. Analysis of thin piezoelectric solids by the boundary element method. Comput Methods Appl Mech Engrg, 2002,191:2297~2315
  • 10Kouitat Njiwa R, Stebut JV. Boundary element numerical modeling as a surface engineering tool: Application to very thin coatings. Surface and Coatings Technology, 1999,116-119:573~579

共引文献43

同被引文献24

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部