期刊文献+

边界元中计算任意高阶奇异线积分的直接法 被引量:5

A DIRECT METHOD FOR EVALUATING LINE INTEGRALS WITH ARBITRARY HIGH ORDER OF SINGULARITIES
下载PDF
导出
摘要 提出了一种精确计算任意高阶奇异曲线积分的直接计算法.首先将曲线单元上的各种几何量用投影线上的几何量来表示,然后通过幂级数展开和解析的方法显式地消除了积分的奇异性.还导出了计算等参坐标对局部直角坐标偏导数的表达式.由于这种方法涉及到的是总体尺度间的坐标变换,操作起来直观明了,可以处理二维问题边界元分析中出现的任意高阶奇异边界积分.最后用具体算例验证该方法的正确性. This paper presents a new direct method for evaluating arbitrary singular boundary integrals appearing in 2D boundary element analysis. Firstly, geometry quantifies on a curved line element are expressed using those projected on a tangential line. Then, singularities involved in the integrals are analytically removed by expressing the non-singular part of the integration kernel as power series. A set of formulations for computing the first and second derivatives of intrinsic coordinates with respect to local orthogonal coordinates are also presented in the paper for the first time. Since the coordinate transformation is at the real spatial scale, the operation is straightforward and convenient, and can be applied to treat arbitrary high order of singular integrals. Finally, some examples are given to verify the correctness and stability of the presented method.
出处 《力学学报》 EI CSCD 北大核心 2014年第3期428-435,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(11172055,11202045)~~
关键词 边界单元法 奇异积分 幂级数展开 投影线 boundary elements method, singular integral, power series expansion, projection line
  • 相关文献

参考文献14

  • 1Gao XW. An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals.Comput Methods Appl Mech Engrg, 2010, 199:2856-2864.
  • 2Guiggiani M, Krishnasamy G, Rudolphi TJ, et al. A general algo- rithm for the numerical solution of hypersingular boundary integral equations, JAppl Mech, 1992, 59:604-614.
  • 3Karami G, Derakhshan D. An efficient method to evaluate hyper-singular and supersingular integrals in boundary integral equations analysis. Engineering Analysis with Boundary Elements, 1999, 23: 317-326.
  • 4Huber O, Lang A, Kuhn G. Evaluation of the stress tensor in 3D elastostatics by direct solving of hypersingular integrals. Computa- tional Mechanics, 1999, 12:39-50.
  • 5Mukherjee S, Mukherjee YX. The hypersingular boundary contour method for three-dimensional linear elasticity. ASMEJournal of Ap- plied Mechanics, 1998, 65:300-309.
  • 6Marczak R J, Creus GJ. Direct evaluation of singular integrals in boundary element analysis of thick plates. Engineering Analysis with Boundary Elements, 2002, 26:653-665.
  • 7Gao XW. Numerical evaluation of two-dimensional singular bound- ary integrals Theory and fortran code. Journal of Computa- tional and Applied Mathematics, 2006, 188(1): 44-64.
  • 8Liu YJ. Analysis of shell-like structures by the boundary element method based on 3-D elasticity, formulation and verification, lnt J NumerMeth Engng, 1998, 41(3): 541-558.
  • 9Ma H, Kamiya N. Distance transformation for the numerical eval- uation of near singular boundary integrals with various kernels in boundary element method. Engineering Analysis with Boundary El- ements, 2002, 26(4): 329-339.
  • 10牛忠荣,王秀喜,周焕林.三维边界元法中几乎奇异积分的正则化算法[J].力学学报,2004,36(1):49-56. 被引量:16

二级参考文献14

  • 1张耀明,吕和祥,王利民.位势平面问题的新的规则化边界积分方程[J].应用数学和力学,2006,27(9):1017-1022. 被引量:12
  • 2Sladek V, Sladek J, Tanaka M. Optimal transformations of the integration variables in computation of singular integrals in BEM. Int J Numer Methods Eng, 2000, 47:1263~1283
  • 3Luo JF, Liu Y J, Berger EJ. Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method. Computational Mechanics,1998,22:404~412
  • 4Liu Y J, Fan H. Analysis of thin piezoelectric solids by the boundary element method. Comput Methods Appl Mech Engrg, 2002,191:2297~2315
  • 5Kouitat Njiwa R, Stebut JV. Boundary element numerical modeling as a surface engineering tool: Application to very thin coatings. Surface and Coatings Technology, 1999,116-119:573~579
  • 6Davey K, Hinduja S. Analytical integration of linear threedimensional triangular elements in BEM. Appl Math Model,1989,13:450~461
  • 7Milroy J, Hinduja S, Davey K. The 3-D thermoelastic boundary element method: Analytical integration for linear isoparametric triangular elements. Appl Math Model,1997,21:763~782
  • 8Davey K, Alonso Rasgado MT, Rosindale I. The 3-D elastodynamic boundary element method: Semi-analytical integration for linear isoparametric triangular elements. Int J Numer Methods Eng,1999,44:1031~1054
  • 9Liu Yijun. Analysis of shell-like structures by the boundary element method based on 3-D elasticity: Formulation and verification. Int J Numer Methods Eng,1998,41:541~558
  • 10牛忠荣,王秀喜,周焕林.边界元法计算近边界点参量的一个通用算法[J].力学学报,2001,33(2):275-283. 被引量:20

共引文献27

同被引文献71

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部