期刊文献+

统一格式的显式与隐式任意混合异步算法 被引量:6

AN ARBITRARILY MIXED EXPLICIT-IMPLICIT ASYNCHRONOUS INTEGRATION ALGORITHM BASED ON UNIFORM DISCRETIZATION FORMAT
下载PDF
导出
摘要 动力学问题的有限元分析需要在每一时步求解系统信息,相对于静力学问题,其计算量要大得多.因而,提高计算效率,节省计算工作量是动力学求解方法研究的主要内容.该文针对大型复杂动力学系统的高效求解问题,提出了一种基于Newmark离散格式的显式、隐式任意混合异步算法,根据整体系统不同局部的物理力学特性和求解精度要求,在空间域及时间域内对动力学系统方程进行多尺度求解.该方法根据显式、隐式算法固有的信息传递机制,采取动态的可变边界处理方法,避免了异步边界上的误差积累;并通过对整体系统能量平衡的校验,动态地确定和修正仿真计算时步,可以有效地预防不稳定性的产生和发展.数值算例表明:该算法能在保持较高的计算精度的同时,极大地降低计算资源消耗,因而具有一定的实用价值. Dynamical finite element method requires solving system information at each time step, and the computational effort is much larger than solving the static ones. Thus, to improve computational efficiency and save computational effort is one the of the main research content in dynamics. The present paper introduces an arbitrarily mixed explicit-implicit asynchronous integration algorithm based on uniform Newmark discretization format, for the efficiently solving of the large and complex dynamic systems. The overall dynamical system can be partitioned into different parts according to the physical and mechanical properties, as well as the requirements of solution accuracy, and the system equation can be solved in multi-scale both at the space domain and time domain. According to the inherent message passing mechanisms of the explicit and implicit algorithm, a variable boundary treatment method was adopted to avoid the accumulation of errors at the asynchronous boundary. The simulation time steps were dynamically determined and corrected according to the energy balance checking, which can effectively prevent the emergence and development of the instability. Numerical example shows that the proposed algorithm can greatly reduce the consumption of computing resources while maintaining high accuracy, thus it has a high practical value.
出处 《力学学报》 EI CSCD 北大核心 2014年第3期436-446,共11页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家高技术研究发展计划(2012AA01AA307) 国家自然科学基金(11072150 61073088)资助项目~~
关键词 结构动力学 Newmark离散 显式算法 隐式算法 任意混合 异步积分 算法稳定性 structural dynamics, Newmark discretization, explicit algorithm, implicit algorithm, arbitrarily mixed, asyn-chronous integration, stability
  • 相关文献

参考文献30

  • 1Woelke P, Abboud N, Tennant D, et al. Ship impact study: Analyt- ical approaches and finite element modeling. Shock and Vibration, 2012, 19(4): 515-525.
  • 2Xu HJ, Liu Y Q, Zhong W. Three-dimensional finite element simu- lation of medium thick plate metal forming and springback. Finite Elements in Analysis and Design, 2012, 5 1: 49-58.
  • 3Firat M, Karadeniz E, Yenice M, et al. Improving the accuracy of stamping analyses including springback deformations. Journal of Materials Engineering and Performance, 2013, 22(2): 332-337.
  • 4Behzad M, Alvandi M, Mba D, et al. A finite element-based algo- rithm for rubbing induced vibration prediction in rotors. Journal of Sound and Vibration, 2013, 332(21): 5523-5542.
  • 5Kacimi A E, Woodward P K, Laghrouche O, et al. Time domain 3D finite element modelling of train-induced vibration at high speed. Computers & Structures, 2013, 118:66-73.
  • 6Kim J, Kang S J, Kang BS. A comparative study of implicit and ex- plicit FEM for the wrinkling prediction in the hydroforming process. The International Journal of Advanced Manufacturing Technology, 2003, 22(7-8): 547-552.
  • 7Oliver J, Huespe AE, Cante JC. An implicit/explicit integration scheme to increase computability of non-linear material and con- tact/friction problems. Computer Methods in Applied Mechanics and Engineering, 2008, 197(21-24): 1865-1889.
  • 8Cai Y, Li G, Wang H, et al. Development of parallel explicit finite el- ement sheet forming simulation system based on GPU architecture. Advances in Engineering Software, 2012, 45(1): 370-379.
  • 9Hadoush A, Boogaard AHVD. Efficient implicit simulation of incre- mental sheet forming. International Journal for Numerical Methods in Engineering. 2012.90(5): 597-612.
  • 10李光耀,王琥,杨旭静,郑刚.板料冲压成形工艺与模具设计制造中的若干前沿技术[J].机械工程学报,2010,46(10):31-39. 被引量:61

二级参考文献63

  • 1高晖,李光耀,钟志华,张维刚.汽车碰撞计算机仿真中的子循环法分析[J].机械工程学报,2005,41(11):98-101. 被引量:5
  • 2PALANISWAMY H, NGAILE G, ALTAN T. Finite element simulation of magnesium alloy sheet forming at elevated temperatures[J]. Journal of Materials Processing Tech., 2004, 146(1): 52-60.
  • 3LIU G R, ZHANG G Y. A normed G space and weakened weak (W2) formulation of a cell-based smoothed point interpolation[J]. Int. J. Computational Methods, 2009, 6(1). 147-179.
  • 4LIU G R. On G space theory[J]. Int. J. Computational Methods, 2009, 6(2).- 257-289.
  • 5LI G Y, TAN M J, LIEW K M. Sheet forming analysis based on improved contact searching algorithm and simple approach for eontaet force evaluation[J]. J. Engrg. Materials and Technology, ASME, 2001, 123: 119-124.
  • 6ZHONG Z H. Finite element procedure for contact-impact problems[M]. Oxford: Oxford Press, 1993.
  • 7XU W L, MAC H, LI C H, et al. Sensitive factors in springback simulation for sheet metal forming[J]. Journal of Materials Processing Technology, 2004, 151(1-3): 217-222.
  • 8MORI K, AKITA K, ABE Y. Springback behaviour in BENDING of ultra-high-strength steel sheets using CNC servo press[J]. Journal of Materials Processing Technology, 2005, 159(1): 91-98.
  • 9GOMES C, ONIPEDEL O, LOVELL M. Investigation of SPRINGBACK in high s trength anisotropic steels[J]. Journal of Materials Processing Technology, 2005, 159 (1). 91-98.
  • 10LEE S W, YOON J W, YANG D Y. Comparative investigation into the dynamic explicit and the static implicit method for springback of sheet metal stamping[J]. Engineering Computations, 1999, 16(2-3): 347-373.

共引文献64

同被引文献33

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部