期刊文献+

基于辅助起立机器人的人体起立动力学建模与试验研究 被引量:4

MATHEMATICAL MODELING AND EXPERIMENTAL STUDY ON SIT-TO-STAND PROCESS BASED ON ASSISTIVE STANDING-UP ROBOT
下载PDF
导出
摘要 设计了一种符合人体起立运动的辅助起立机器人,通过牛顿欧拉方程对人体起立过程动力学进行分析与建模,推导机器人辅助起立、上肢辅助起立和肌力不足下肢辅助起立3种情况下,人体力与力矩平衡方程,依据方程在Simulink中建立仿真模型,并使用传感器系统对起立机器人辅助人体起立过程中力与力矩进行测量分析.结果表明:不论采取何种辅助起立方法,辅助起立机器人都可有效辅助起立,特别是对起立初始阶段辅助效果尤为明显.上肢辅助起立时,既可保持身体平衡与稳定,又可补偿起立时所需力与力矩,在接近完全站立时这种效果尤为明显,仿真模型可预测站立过程的关节力与力矩.肌力不足下肢参与辅助起立时,所提供辅助力有限但也起到一定作用. The new assistive standing-up robot followed the rule of sit-to-stand movement was developed. Mathematical model during standing-up motion was built by using Newton-Euler approach for kinetics analysis. Force and moment equilibrium equations were obtained and simulation model was built in Simulink by standing up with robot-aided, robot and arms supported and robot, arm and lower limbs of weakness of muscle strength. By means of assistive standing- up robot and sensors, force and moment were measured and analyzed. The results show that standing-up robot can be efficiently used to assist the rising, especially in initial stage, in spite of sit-to-stand aided-method. Arm-supported standing-up maneuver can keep the posture balance and stable, and has compensation ability of necessary force and mo- ment of lower extremity, particularly close to upright standing posture, and force and moment can be predicted accurately by the standing posture simulation model. Lower limbs of deficient muscle strength play limited role to assist the rising.
出处 《力学学报》 EI CSCD 北大核心 2014年第3期457-464,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金项目(50575053) 中国与斯洛文尼亚政府间科技项目(9-7)资助~~
关键词 起立机器人 康复训练 关节力与力矩 数学建模 standing-up robot, rehabilitation training, joint force and moment, mathematical modeling
  • 相关文献

参考文献17

  • 1Goemaere S, Van LM, De NP, et al. Bone mineral status in para- plegic patients who do or do not perform standing. Osteoporosis International, 1994, 4(3): 138-143.
  • 2Bahramia E Richer R, Jabedar ME et al. Biomechanical analysis of sit-to-stand transfer in healthy and paraplegic subjects. Clinical Biomechanics, 2000, 15(2): 123-133.
  • 3Atsushi T, Ryota K, Yasuhisa H. Sit-to-stand and stand-to-sit trans- fer support for complete paraplegic patients with robot suit HAL. Advanced Robotics, 2010, 24(11): 1615-1638.
  • 4Fattah A, Agrawal SK, Glenn C, et al. Design of a passive gravity- balanced assistive device for sit-to-stand tasks. Transactions of the ASME, 2006, 128(5): 1122-1129.
  • 5Agrawal SK., Fattah A. Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion. Tran- sations on Neural Systems and Rehabilitation Engineering, 2004, 12(2): 157-165.
  • 6Bayley JS, Cochran TP, Sledge CB. The weight-bearing shoulder: the impingement syndrome in paraplegics. Journal of Bone Joint Surgery, 1987, 69(5): 676-678.
  • 7王志强,姜洪源,KAMNIK Roman.辅助起立机器人反馈控制与速度前馈控制性能对比[J].机器人,2012,34(6):641-645. 被引量:5
  • 8Hong SW, Vlad P, William S. Identi?cation of human-generated forces on wheelchairs during total-body extensor thrusts. Clinical Biomechanics, 2006, 21(8): 790-798.
  • 9Eby WR, Kubica E. Modeling and control considerations for pow- ered lower-limb orthoses: A design study for assisted STS. Journal of Medical Devices, 2007, 1(2): 126-139.
  • 10Neptune RR, McGowan CE Muscle contributions to whole-body sagittal plane angular momentum during walking. Journal of Biome- chanics, 2011, 44(1): 6-12.

二级参考文献8

  • 1张晓玉.我国个人移动辅助器具领域的发展现状和趋势[c]//第七届全国康复医学工程与康复工程学术研讨会论文集.2010: 8-9.
  • 2Kim J Y, Popovic M R. Dynamic modeling and torque estima-tion of FES-assisted arm-free standing for paraplegics[J]. IEEETransactions on Neural Systems and Rehabilitant Engineering,2006, 14(1). : 46-54.
  • 3Kuzelicki J, Bajd T, Kamnik R. FES assisted sit-to-stand trans-fer in paraplegic person[C]//Proceedings of the 22nd AnnualInternational Conference of the IEEE Engineering in Medicineand Biology Society. Piscataway, NJ, USA: IEEE, 2000: 2247-2250.
  • 4Lau B, Guevremont L, Mushahwar V K. Strategies for gener-ating prolonged functional standing using intramuscular stimu-lation or intraspinal microstimulation[J]. IEEE Transactions onNeural Systems and Rehabilitation Engineering, 2007, 15(2). :273-284.
  • 5Doheny E P, Fan C W, Foran T. An instrumented sit-to-stand test used to examine differences between older fallersand non-fallers[C]//33rd Annual International Conference ofthe IEEE Engineering-in-Medicine-and-Biology-Society. Pis-cataway, NJ, USA: IEEE, 2011: 3063-3066.
  • 6Mihelj M,Munih M. Unsupported standing with minimized an-kle muscle fatigue [J]. IEEE Transactions on Biomedical Engi-neering, 2004, 51(8). : 1330-1340.
  • 7Senanayake C, Senanayake S M N A. Emerging roboticsdevices for therapeutic rehabilitation of the lower extrem-ity[C]//IEEE/ASME International Conference on Advanced In-telligent Mechatronics. Piscataway, NJ, USA: IEEE, 2009:1142-1144.
  • 8Kamnik R, Bajd T. Human voluntary activity integration inthe control of a standing-up rehabilitation robot: A simulationstudy[J]. Medical Engineering & Physics, 2007,29(9). : 1019-1029.

共引文献4

同被引文献14

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部