期刊文献+

仿生六足机器人机构设计及控制方法研究 被引量:9

Research of Control Method and Mechanism Design of Bio-inspired Hexapod Robot
下载PDF
导出
摘要 机器人足部与壁面间的粘附能力及其运动控制策略是爬壁机器人能够在处于不同倾斜度的壁面上爬行的关键技术。模仿甲虫足部钩刺对抓的特征及尺蠖蠕动爬行运动特性设计了一种可灵活转向的仿生六足爬行机器人机构。该机器人采用CPG(central pattern generator)仿生控制方法实现其在粗糙壁面上的任意方向的运动,并且通过超声波传感器的反馈信号能够实现避障功能。机器人足部采用对抓设计提高了爬行稳定性,同时CPG控制方法简单、新颖。基于Matlab软件建立了CPG控制网络,并结合反馈信号实时调节网络输出。在Webots移动机器人仿真环境下完成了机器人建模,CPG控制器程序编写,通过动态仿真验证了六足机器人机构和控制方法的合理性,机器人爬行速度约2.7 cm/s。 The adhesive between robot’ s feet and walls,and the control strategy are two key elements in wallclimbing robots. Inspired by the beetle claws and inchworm-like motion,a flexible steerable beetle-inspired hexapod climbing robot is designed in this paper. The bionic control method,i. e. Central Pattern Generator( CPG) is used to achieve straight motion and obstacle avoidance ability. The robot foot with crawling grasping is designed to improve its climbing stability. The structure of robot is simple,and the CGP control method is simple and innovative. Based on MATLAB software,the CPG control network is constructed combined with ultrasonic sensor feedback signal. The correct control signals can be obtained by adjusting the network parameters in real time. In the Webots enviroment,a professional mobile robot simulation software,the design of a bio-inspired hexapod robot is developed and the controller programming is performed. and the kinematic simulation experiments for the robot are conducted with Webots. The experimental results show that the robot has a reasonable mechanism and the control method is feasible and the crawling speed of approximately 2. 7 cm /sec can be achieved.
出处 《机械科学与技术》 CSCD 北大核心 2014年第11期1621-1626,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 国家重点基础研究发展计划项目(2011CB302106) 国家自然科学基金青年科学基金项目(51005223)资助
关键词 仿生六足机器人 中枢模式发生器(CPG) MATLAB仿真 Webots仿真软件 biologically inspired hexapod robot central pattern generator MATLAB webots simulation software
  • 相关文献

参考文献13

  • 1Chu S K K,Pang G K H.Comparison between different model of hexapod robot in fault-tolerant gait[J].IEEE Transactions on Systems,Man,and Cybernetics,Part A,2002,32(6):752-756.
  • 2丁希仑,王志英,Alberto ROVETTA.六边形对称分布六腿机器人的典型步态及其运动性能分析[J].机器人,2010,32(6):759-765. 被引量:18
  • 3徐坤,丁希仑,李可佳.圆周对称分布六腿机器人三种典型行走步态步长及稳定性分析[J].机器人,2012,34(2):231-241. 被引量:20
  • 4王倩,陈甫,臧希喆,赵杰.新型六足机器人机构与控制系统设计[J].机械设计与制造,2008(3):148-150. 被引量:13
  • 5Venkataraman S T.A simple legged locomotion gait mode[J].Robotics and Autonomous System,1997,22:75-85.
  • 6Inagaki S,Yuasa H,Arai T.CPG model for autonomous decentralized multi-legged robot systemgeneration and transition of oscillation patterns and dynamics of oscillators[J].Robotics and Autonomous Systems 2003,44(3):171-179.
  • 7Arena P,Fortuna L,Frasca M,et al.Climbing obstacles via bio-inspired CNN-CPG and adaptive attitude control[C]//2005 IEEE International Symposium on Circuits and Systems,May 26,2005,Kobe,Japan,Piscataway,NJ,USA:IEEE,2005:5214-5217.
  • 8牛超群.基于CPG的六足机器人协调运动控制方法的研究[D].哈尔滨:哈尔滨工业大学,2008.
  • 9http://bdml.stanford.edu/twiki/bin/view/Rise/SpinyBot.html#Spinybot_II_Toe_Compliance.
  • 10Liu Y,Hu C,Wu X,et al.Design of vertical climbing robot with compliant foot[C]//2012 IEEE International Conference on Robotics and Biomimetics,December 11-14,2012,Guangzhou,China,Piscataway,NJ,USA:IEEE,2012:649-654.

二级参考文献42

  • 1赵杰,郭亮,臧希喆,姜健,蔡鹤皋.应用于六足机器人平台的舵机控制器设计[J].机械与电子,2005,23(9):48-51. 被引量:19
  • 2韩宝玲,王秋丽,罗庆生.六足仿生步行机器人足端工作空间和灵活度研究[J].机械设计与研究,2006,22(4):10-12. 被引量:22
  • 3雷静桃,高峰,崔莹.多足步行机器人的研究现状及展望[J].机械设计,2006,23(9):1-3. 被引量:37
  • 4Hirose S.Three basic types of locomotion in mobile robots[C] //Sth International Conference on Advanced Robotics.Piscataway,NJ,USA:IEEE,1991:12-17.
  • 5Lee B H,Lee I K.The implementation of the gaits and body structure for hexapod robot[C] //IEEE International Symposium on Industrial Electronics.Piscataway,NJ,USA:IEEE,2001:1959-1964.
  • 6Lee T T,Liao C M,Chen T K.On the stability properties of hexapod tripod gait[J].IEEE Journal of Robotics and Automation,1988,4(4):427-434.
  • 7Lee W J,Orin D E.Omnidirectional supervisory control of a multilegged vehicle using periodic gaits[C] //IEEE Journal of Robotics and Automation,1988,4(6):635-642.
  • 8Kamikawa K,Arai T,Inoue K,et al.Omni-directional gait of multi-legged rescue robot[C] //IEEE International Conference on Robotics and Automation.Piscataway,NJ,USA:IEEE,2004:2171-2176.
  • 9Bares J,Hebert M,Kanade T,et al.Ambler-An autonomous rover for planetary exploration[J].Computer,1989,22(6):18-26.
  • 10Erden M S,Leblebicioglu K.Free gait generation with reinforcement learning for a six-legged robot[J].Robotics and Autonomous Systems,2008,56(3):199-212.

共引文献44

同被引文献75

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部