期刊文献+

非局部TV正则化的图像泊松去噪模型与算法 被引量:6

Image Poisson Denoising Model and Algorithm Based on Nonlocal TV Regularization
下载PDF
导出
摘要 针对图像泊松噪声去除问题,提出一种基于非局部全变差正则化的图像去噪模型。在Bayesian-MAP框架下,采用负自然对数泊松似然函数作为保真项。结合图像的非局部相似性与梯度模稀疏性先验,构造非局部TV正则项,建立图像泊松去噪非局部TV正则化模型。利用变量分裂法和交替最小化方法对模型进行求解。实验结果表明,所提模型和算法能够较好的处理图像泊松去噪问题。与其它图像泊松去噪模型和算法比较,模型的图像恢复性能无论是在视觉效果还是在客观评价指标上都有明显改善。 Concerning the removal problem of image Poisson noise, a novel image denoising model was proposed based on nonlocal total variation (TV) regularization. In the framework of Bayesian-MAP estimation, the negative-log Poisson likelihood function as the fidelity term was utilized. Combining the nonlocal similarity prior and gradient sparsity priori of the natural image, nonlocal TV regularization term was constructed to build the image Poisson denoising optimization model. The optimization model could be reduced to a series of convex minimization problems that could be efficiently solved with a combination of the variable splitting method and the alternating minimization method, leading to fast and easy-to-code algorithms. Experimental results show that the proposed method is effective , and it outperforms than other methods both on objective criterion and visual fidelity.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第9期2110-2115,共6页 Journal of System Simulation
基金 国家自然科学基金(61302178 61301215) 江苏省博士后基金(1301025C)
关键词 图像去噪 泊松噪声 非局部全变差 迭代算法 image denoising poisson noise nonlocal total variation iterative algorithm
  • 相关文献

参考文献16

  • 1Rudin L I, Osher S, Fatemi E. Nonlinear Total Variation based Noise Removal Algorithms [J]. Physica D" Nonlinear Phenomena (S0167-2789), 1992, 60(1-4): 259-268.
  • 2Chen B, Cai J L, Chert W S, et al. A Multiplicative Noise Removal Approach based on Partial Differential Equation Model [J]. Mathematical Problems in Engineering (S1024-123X), 2012, DOI: 10.1155/2012/242043.
  • 3白键,冯象初.一种基于积分微分方程的泊松噪声去除算法[J].电子与信息学报,2013,35(2):451-456. 被引量:7
  • 4Gilboa G, Sochen N, Zeevi Y Y. Variational Denoising of Partly Textured Images by Spatially Varying Constraints [J]. IEEE Transactions on Image Processing (S1057-7149), 2006, 15(8): 2281-2289.
  • 5胡学刚,李妤.基于分数阶变分的图像泊松去噪模型[J].计算机应用,2013,33(4):1100-1102. 被引量:5
  • 6孙玉宝,韦志辉,吴敏,肖亮,费选.稀疏性正则化的图像泊松去噪算法[J].电子学报,2011,39(2):285-290. 被引量:20
  • 7Buades A, Coil B, Morel J M. A Review of Image Denoising Algorithms, with a New One [J]. Multiscale Modeling andSimulation (S 1540-3459), 2005, 4(2): 490-530.
  • 8Buades A, Coil B, Morel J M. Nonlocal Image and Movie Denoising [J]. International Journal of Computer Vision (S0920-5691), 2007, 76(2): 123-139.
  • 9Deledalle C A, Tupin F, Denis L. Poisson NL Means: Unsupervised Non Local Means for Poisson Noise [C]//IEEE 17th International Conference on Image Processing, 2010. USA: IEEE, 2010: 801-804.
  • 10He L, Greenshields I R. A Nonlocal Maximum Likelihood Estimation Method for Rician Noise Reduction in MR Images [J]. IEEE Transactions on Medical Imaging (S0278-0062), 2009, 28(2): 165-172.

二级参考文献34

  • 1F J Anscombe. The transformation of Poisson, binomial and negative-binomial data[ J ]. Biomelrika, 1948, 35 ( 3 ) : 246 - 254.
  • 2B Zhang,M Fadili,J-L Starck. Wavelets,ridgelets and curvelets for poisson noise removal [ J ]. IEEE Trans Image Process, 2008,17(7) : 1093 - 1108.
  • 3E D. Kolaczyk. Nonparametxic estimation of intensity maps us ing Haar wavelets and Poisson noise characteristics[ J]. The As trophysical Journal, 2000,534( 1 ) :490- 505.
  • 4A Bijaoui, G Jammal. On the distribution of the wavelet coeffi cient for a Poisson noise[ J] .Signal Process,2001,81 (9) : 1789 -1800.
  • 5R Nowak, E Kolaczyk. A statistical multiscale framework for poisson inverse problems[ J]. IEEE.Transactions on Information Theory,2000,46(5) : 1811 - 1825.
  • 6R WiUett, R Nowak. Fast multiresolufion photon-limited image reconstruction[ A]. Proc IEEE. hat Sym Biomedical Imaging (ISBI '04) [C]. Arlington: IEEE Press,2004.1192 - 1195.
  • 7S Setzer. Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage[ A]. Lecture Notes In Computer Science [ C]. Voss: Springer-Verlag , 2(109.5567.464 - 476.
  • 8Stanley Osher, Martin Burger, et al. An iterative reguladzafion method for total variation-based image restoration[ J]. Mulli- scale Model, Simul, 2005,4 (2) : 460 - 489.
  • 9S Osher, Y Mao, et al. Fast linearized Bregman iteration for compressive sensing and sparse denoising[ J]. Communications in Mathematical Sciences, 2010,8( 1 ) : 93 - 111.
  • 10M Fadili, J-L Starck, F. Murtagh. Inpainting and zooming us ing sparse representations[ J]. The Computer Journal,2009,52 (1):64-79.

共引文献27

同被引文献23

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部