期刊文献+

基于可移动窗口和扩散距离的立体匹配算法 被引量:1

Stereo Matching Algorithm Based on Shiftable Window and Diffusion Distance
下载PDF
导出
摘要 自适应权重立体匹配算法需要评估像素对之间的相似度,不同于传统方法利用色彩差异、距离远近进行度量,引入"扩散距离"这种新的度量方式,能够顾及像素在特征空间中的全局分布。为了减少计算的复杂性和提高鲁棒性,代价聚合分为两个阶段:(1)针对每一个像素,从预先定义的9个窗口中选择最佳的;(2)如果像素对应的最佳窗口均方差低于某一阈值,则对其采用自适应权重的方法进行处理,其余像素则利用最佳窗口来计算。代价计算使用颜色和梯度信息,并通过加权中值滤波进行视差优化。运行结果在Middlebury网站上评估,测试集上平均误匹配像素百分比为5.63,低于传统自适应权重算法及其相关改进方法。 Adaptive support-weight stereo matching algorithm requires assessing the degree of similarity between pairs of pixels. Different from the traditional algorithm based on adaptive support weight which is measured by color difference and distance, a new measure method based on diffusion distance was introduced which can account for the global distribution of pixels in their feature space. In order to reduce the complexity of computing and improve the robustness, the cost aggregation was divided into two phases. Firstly, the best window was selected from nine predefined windows for each pixel. Secondly, the pixel was processed by means of adaptive support weight if the mean square error of the corresponding optimal window was below a certain threshold. And otherwise it was calculated through the best window. The matching cost computation used color and gradient information. The weighted median filtering was applied to disparity refinement. The average percent of bad pixels of the algorithm on Middlebury stereo dataset is 5.63, which is below to that of the traditional algorithm of adaptive support window and improved ones.
出处 《系统仿真学报》 CAS CSCD 北大核心 2014年第9期2130-2135,共6页 Journal of System Simulation
基金 国家863计划项目(2013AA102304)
关键词 立体匹配 扩散距离 自适应权重 可移动窗口 stereo matching diffusion distance adaptive support weight shiftable window
  • 相关文献

参考文献14

  • 1Scharstein D, Szeliski R. A Taxonomy and Evaluation of Dense Two-frame Stereo Correspondence Algorithms [J]. International Journal of Computer Vision (S0920-5691), 2002, 47(1-3): 7-42.
  • 2罗三定,陈海波.基于区域增长的自适应窗口立体匹配算法[J].中南大学学报(自然科学版),2005,36(6):1042-1047. 被引量:10
  • 3Yoon K J, Kweon I S. Adaptive Support-weight Approach for Correspondence Search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2006, 28(4): 650-656.
  • 4Gu Z, Su X, Liu Y, et al. Local Stereo Matching with AdaptiveSupport-weight, Rank Transform and Disparity Calibration [J]. Pattern Recognition Letters (S0167-8655), 2008, 29(9): 1230-1235.
  • 5De-Maeztu L, Villanueva A, Cabeza R. Stereo Matching Using Gradient Similarity and Locally Adaptive Support-weight [J]. Pattern Recognition Letters (S0167-8655), 2011, 32(13): 1643-1651.
  • 6Mukherjee D, Wang C Wu Q J. Stereo Matching Algorithm Based on Curvelet Decomposition and Modified Support Weights [C]// IEEE International Conference on In Acoustics Speech and Signal Processing, Dallas, Texas, USA. USA: IEEE, 2010:758-761.
  • 7Hosni A, Bleyer M, Gelautz M, et al. Local Stereo Matching Using Geodesic Support Weights [C]// International Conference on Image Processing, Cairo, Egypt. USA: IEEE, 2009: 2093-2096.
  • 8Oh C, Ham B, Sohn K. Probabilistic Correspondence Matching Using Random Walk with Restart [C]// British Machine Vision Conference. Guildford, UK: BMVA, 2012: 1-10.
  • 9Rhemann C, Hosni A, Bleyer M, et al. Fast Cost-volume Filtering for Visual Correspondence and Beyond [C]//IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA. USA: IEEE, 2011: 3017-3024.
  • 10Farbman Z, Fattal R, Lischinski D. Diffusion Maps for Edge-aware Image Editing [J]. ACM Transactions on Graphics (S0730-0301), 2010, 29(6): 145-154.

二级参考文献13

  • 1Anandan P.A computational framework and an algorithm for the measurement of visual motion[J].International Journal of Computer Vision,1989,2(3):283-310.
  • 2Kanade T,Okutomi M.A stereo matching algorithm with an adaptive window:Theory and experiment[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1994,16(9):920-932.
  • 3Fusiello A,Roberto V.Efficient stereo with multiple windowing[A].IEEE Conference on Computer Vision and Pattern Recognition[C].San Juan,1997:858-863.
  • 4Shimizu M,Okutomi M.Precise sub-pixel estimation on area-based matching[A].8th International Conference on Computer Vision[C].Vancouver,2001:90-97.
  • 5Veksler O.Fast variable window for stereo correspondence using integral images[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].Madison,2003:556-561.
  • 6Intille S,Bobick A.Disparity-space images and large occlusion stereo[A].European Conference on ComputerVision[C].Stockholm,1994:179-186.
  • 7Belhumeur P N.A bayesian-approach to binocular stereopsis[J].Computer Vision,1996,19(3):237-260.
  • 8Intille S,Bobick A.Incorporating intensity edges in the recovery of occlusion regions[A].International Conference on Pattern Recognition[C].Jerusalem,1994:674-677.
  • 9Fua P.A parallel stereo algorithm that produces dense depth maps and preserves image features[J].Machine Vision and Applications,1993,69(1):35-49.
  • 10SUN Chang-ming.Fast stereo matching using rectangular subregioning and 3D maximum-surface techniques[J].International Journal of Computer Vision,2002,47(3):99-117.

共引文献9

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部