期刊文献+

极端死亡率债券的运行机制与定价模型

The Operational Mechanism and Pricing Model of Extreme Mortality Bonds
下载PDF
导出
摘要 极端死亡率债券是票息或面值与极端死亡概率相关的债券,能够将寿险公司所面临的极端死亡率风险转移到资本市场。本文阐述了极端死亡率债券的市场发展,包括发行规模、触发机制、债券期限、债券分层、债券评级等,分析了以Tartan债券为代表的本金赔付累积型极端死亡率债券的运行机制,并给出了考虑极端死亡率风险的跳跃性特征下的本金赔付累积型极端死亡率债券Wang转换定价的解析式。 Extreme mortality bonds (EMBs)refer to the bonds whose principals vary with mortality index due to the extreme mortality risk.This paper presents the EMB market develop-ment from the perspectives of issue scale,trigger mechanism,bond maturity,tranche and bond rating;analyzes the payment mechanism of cumulative principal of the EMBs based on the Tartan bond issued by Scottish Re in 2006;derives an analytical formula of pricing the EMBs based on a single factor Wang transfer method considering the j ump diffusion of mortality risk.
出处 《财经理论与实践》 CSSCI 北大核心 2015年第1期29-33,共5页 The Theory and Practice of Finance and Economics
基金 教育部人文社科研究规划基金(12YJA790152)
关键词 极端死亡率债券 运行机制 市场发展 定价模型 Extreme mortality bond Operating mechanism Market development Pricing model
  • 相关文献

参考文献8

  • 1Blake, D. , A.J.G. Cairns, and K. Dowd. Living with mortali ty: longevity bonds and other mortality-linked securities [J]. British Actuarial Journal, 2006, 12(1): 153-197.
  • 2Bauer, D. and F. W. Kramer. Risk and valuation of mortality contingent catastrophe bonds[R]. Working Paper, 2007.
  • 3Wang, S.. A class of distortion operations for pricing financial and insurance risks [J]. Journal of Risk and Insurance, 2000, 67(1): 15-36.
  • 4Chen, H. and S. H. Cox. Modeling mortality with jumps:ap- plication to mortality securitization [J]. Journal of Risk and In surance, 2009, 76(3): 727-751.
  • 5尚勤,秦学志,周颖颖.巨灾死亡率债券定价模型研究[J].系统工程学报,2010,25(2):203-208. 被引量:5
  • 6Klein, R. Mortality catastrophe bonds as a risk mitigation tool [M]. Society of Actuaries Newspaper,2006.
  • 7Lin, Y. and S. H. Cox. Securitization of catastrophe mortality risks [J]. Insurance: Mathematics and Economics, 2008, (42) : 628 -637.
  • 8Milevsky, M. A. and S. D. Promislow. mortality derivatives and the option to annualize [J]. Insurance.. Mathematics and E- conomics, 2001, 29 (3): 299 -318.

二级参考文献14

  • 1Lee R D, Carter L R. Modeling and forecasting US mortality[J]. Journal of the American Statistical Association, 1992, 87 (419) : 659 -671.
  • 2Brouhns N, Denuit M, Vermunt J K. A Poisson log-bilinear approach to the construction of projected life tables [J]. Insurance: Mathematics and Economics, 2002, 31 (3): 373-393.
  • 3Currie I D, Durban M, Eilers P H C. Smoothing and forecasting mortality rates[J]. Statistical Modeling, 2004, 4(4) : 279 - 298.
  • 4Dahl M. Stochastic mortality in life insurance: Market reserves and mortality-linked insurance contracts [ J ]. Insurance: Mathematics and Economics, 2004, 35 ( 1 ): 113 - 136.
  • 5Schrager D F. Affine stochastic mortality [ J ]. Insurance : Mathematics and Economics, 2006, 38 ( 1 ) : 81 - 97.
  • 6Cairns A J G, Blake D, Dowd K. Pricing death: Frameworks for the valuation and securitization of mortality risk [ J]. ASTIN Bulletin, 2006, 36(1): 79- 120.
  • 7Milevsky M A, Promislow S D. Mortality derivatives and the option to annualize[J]. Insurance: Mathematics and Economics, 2001, 29(3) : 299 -318.
  • 8Zhou Chunsheng. A Jump-diffusion Approach to Modeling Credit Risk and Valuing Defaultable Securities[ R]. Beijing: Finance and Economics Discussion Series, 1997.
  • 9Dhaene J, Denuit M, Goovaerts M J, et al. The concept of comonotonicity in actuarial science and finance: Theory[J]. Insurance : Mathematics and Economics, 2002, 31 (1): 3 - 33.
  • 10Kass R, Goovaerts M, Dhaene J, et al. Modem Actuarial Risk Theory [ M ]. Heideberg: Springer-Verlag, 2008.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部